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Abstract—Educational content presents a fundamental chal-
lenge: knowledge is deeply interconnected through prerequisite
relationships, yet traditional textbooks present linear sequences
that obscure these dependencies. We present a system that
automatically decomposes educational content into hierarchical
directed acyclic graphs (DAGs) where concepts are nodes and
prerequisite relationships are edges. Our key innovations include:
(1) iterative LLM-based concept extraction from unstructured
text, (2) fuzzy matching to a canonical concept database, (3)
recursive prerequisite resolution creating complete dependency
chains, and (4) layer-based hierarchical positioning where con-
cept placement is determined by maximum prerequisite depth.
Applied to 7 chapters of SAT mathematics, our system automat-
ically generated dependency graphs containing 500+ concepts
with 1000+ prerequisite edges, enabling personalized learning
paths and prerequisite-aware tutoring. The system achieves 97%
accuracy in concept extraction and handles circular dependency
detection, missing prerequisite identification, and optimal graph
layout generation.

Index Terms—Knowledge Graphs, Hierarchical Learning, Pre-
requisite Dependencies, Educational Technology, Concept Extrac-
tion

I. INTRODUCTION

A. The Fundamental Problem
Educational content suffers from a structural limitation:

textbooks present knowledge linearly (Chapter 1, 2, 3...), but
knowledge is not linear—it is a complex web of dependencies.
Consider:

Linear Presentation:
“Chapter 4: Systems of Linear Equations. In this
chapter, we solve two equations simultaneously...”

Hidden Reality:
• Systems of equations require understanding: equations,

variables, solving equations, graphing lines, slope-
intercept form

• Each of those requires: addition, subtraction, multiplica-
tion, division, fractions, negative numbers

• Those require: counting, place value, number line, com-
paring numbers

• Down to pre-mathematical concepts: unity, multiplicity,
sequence

A student struggling with Chapter 4 might actually be
missing knowledge from 3 levels deep in the prerequisite tree.
Traditional education has no systematic way to identify this.

B. Existing Approaches

Manual Concept Mapping: Educators hand-draw concept
maps. Does not scale, inconsistent between authors, requires
domain expertise.

Knowledge Graphs (KGs): Wikipedia, Wikidata, Concept-
Net provide large-scale graphs but lack fine-grained educa-
tional prerequisites. They connect ”is-a” and ”related-to” but
not ”must-know-before”.

Learning Object Metadata: IEEE LOM and SCORM
specify prerequisites through metadata but require manual
annotation and offer no automated extraction or validation.

Adaptive Learning Systems: Khan Academy, ALEKS
use item response theory for assessment but lack explicit
prerequisite graphs, making diagnosis difficult.

C. Our Contribution

We present the first end-to-end system for automatic hierar-
chical decomposition of educational content through recursive
prerequisite analysis. Our contributions:

• Multi-Pass LLM Extraction: Iterative refinement to
extract comprehensive concept lists from unstructured
chapters

• Canonical Database Matching: Fuzzy matching with
synonym handling to link extracted concepts to global
database

• Recursive Resolution Algorithm: O(V + E) traversal
generating complete transitive prerequisite closure

• Layer-Based Hierarchical Positioning: Automatic topo-
logical sorting with constraint-based layout optimization

• Question Placement Algorithm: Positioning assessment
items based on concept union of solution methods

• Validation Framework: Circular dependency detection,
missing prerequisite identification, graph consistency
checking

Applied to SAT mathematics, we demonstrate how 7 high-
level chapters automatically decompose into 500+ atomic
concepts organized across 20+ hierarchical layers, exposing
the true knowledge structure hidden beneath linear textbook
organization.



II. SYSTEM ARCHITECTURE

Our system implements a five-stage pipeline transforming
unstructured educational text into validated prerequisite DAGs.

III. STAGE 1: ITERATIVE LLM CONCEPT EXTRACTION

Traditional NLP extracts explicit noun phrases from text.
Mathematical education requires identifying implicit concep-
tual dependencies. We use iterative LLM prompting with
refinement.

A. Multi-Pass Extraction Protocol

Pass 1 - Surface Concepts: Extract explicitly mentioned
concepts

Prompt Template:

"""
Read this chapter on [topic]. List ALL mathematical
concepts mentioned explicitly. Include:
- Operations (addition, subtraction)
- Objects (equations, variables, fractions)
- Methods (factoring, solving, graphing)

Output format: One concept per line
"""

Output Example (Chapter 4: Systems of Linear Equations):

systems-of-equations
simultaneous-equations
graphical-solutions
substitution-method
elimination-method

Pass 2 - Prerequisite Concepts: Extract implicitly required
knowledge

Prompt Template:

"""
For the chapter on [topic], what concepts must
students already know BEFORE this chapter?

Consider:
- What skills are assumed?
- What notation is used without definition?
- What prior knowledge is referenced?

Be comprehensive. Go deep.
"""

Output Example:

linear-equations
slope-intercept-form
graphing-lines
coordinate-plane
slope
y-intercept
solving-equations

Pass 3 - Easy vs Hard Question Analysis
This is the critical insight: chapters handle both easy

and hard questions, but hard questions require concepts not
mentioned in the chapter text.

Prompt Template:

"""
Chapter: [topic]

EASY QUESTION: [example basic problem]
HARD QUESTION: [example SAT-level problem]

What additional concepts are needed to solve
the HARD question that weren’t needed for EASY?

Think about:
- Edge cases (parallel lines, no solution)
- Applications (word problems)
- Combinations (systems + inequalities)
- Advanced techniques (complex elimination)
"""

Output Example:

no-solution-systems
infinite-solutions
parallel-lines
inconsistent-systems
dependent-systems
word-problems
applications

Pass 4 - Iterative Refinement
"""
Current concept list: [all concepts from passes 1-3]

Are we missing anything? Consider:
- Foundational operations (multiplication, division)
- Number systems (fractions, integers)
- Algebraic manipulations
- Common pitfalls students face
"""

B. Extraction Results

For Chapter 4 (Systems of Linear Equations):

TABLE I
ITERATIVE EXTRACTION RESULTS

Pass New Concepts Total

Pass 1 (Surface) 8 8
Pass 2 (Prerequisites) 15 23
Pass 3 (Hard Questions) 12 35
Pass 4 (Refinement) 8 43

Final — 43

IV. STAGE 2: DATABASE MATCHING AND LINKING

Extracted concepts are free-text strings. We must link them
to a canonical global concept database.

A. Global Concept Database Structure

interface MathConcept {
id: string; // Canonical identifier
name: string; // Display name
description: string; // Full description
prerequisites: string[]; // Array of prerequisite

IDs
category: ’foundations’ | ’algebra’ | ’geometry’

| ’statistics’ | ’calculus’;
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Fig. 1. Five-stage pipeline for hierarchical knowledge decomposition. Solid arrows show stage progression, dashed arrows show outputs at each stage.

difficulty: ’basic’ | ’intermediate’ | ’advanced’;
synonyms?: string[]; // Alternative names
visualAnalogy: string; // Pedagogical metaphor

}

Example Entry:

{
id: ’slope-intercept-form’,
name: ’Slope-Intercept Form’,
description: ’Linear equation written as y = mx +

b’,
prerequisites: [

’slope’,
’y-intercept’,
’linear-equations’,
’variables’

],
category: ’algebra’,
difficulty: ’intermediate’,
synonyms: [

’y=mx+b’,
’slope intercept form’,
’linear form’

],
visualAnalogy: ’A recipe: start at b, add m for

each x’
}

B. Fuzzy Matching Algorithm

Extracted strings rarely match database IDs exactly:
• “solving equations” vs “solving-equations”
• “y-intercept form” vs “slope-intercept-form”
• “simultaneous equations” vs “systems-of-equations”
Matching Strategy:
Step 1 - Normalization:

def normalize(text):
text = text.lower()
text = text.replace(’ ’, ’-’)
text = text.replace(’_’, ’-’)
text = re.sub(r’[ˆa-z0-9-]’, ’’, text)
return text

Step 2 - Exact Match:

normalized_input = normalize(extracted_concept)
if normalized_input in database:

return database[normalized_input]

Step 3 - Synonym Match:

for concept_id, concept in database.items():
for synonym in concept.get(’synonyms’, []):

if normalize(synonym) == normalized_input:
return concept_id

Step 4 - Partial Match:

# Find all concepts where input is substring
# or database ID is substring of input
candidates = []
for concept_id, concept in database.items():

if (normalized_input in concept_id or
concept_id in normalized_input):
candidates.append((concept_id, concept))

Step 5 - Semantic Similarity: If no match found, use LLM
for disambiguation:

prompt = f"""
Extracted concept: "{extracted_concept}"

Possible matches from database:
{’, ’.join(top_5_candidates)}

Which is the best match? Or is this a NEW concept?
"""

C. Handling New Concepts

If concept genuinely doesn’t exist in database:

def create_new_concept(name, chapter_context):
# Generate ID
concept_id = normalize(name)

# Use LLM to infer prerequisites
prompt = f"""

New concept: {name}
Context: Appears in chapter on {chapter_context}

What are the prerequisites for this concept?
Choose from existing concepts: {database.keys()}
"""

prerequisites = llm_extract_prerequisites(prompt
)

# Add to database
database[concept_id] = {

’id’: concept_id,
’name’: name,
’prerequisites’: prerequisites,
’needs_review’: True # Flag for manual

review
}

D. Matching Results

V. STAGE 3: RECURSIVE PREREQUISITE RESOLUTION

The core algorithmic contribution: automatic generation of
complete transitive prerequisite closure.



TABLE II
DATABASE MATCHING RESULTS (7 CHAPTERS)

Match Type Count Percentage

Exact Match 187 62.3%
Synonym Match 73 24.3%
Partial Match 28 9.3%
Semantic (LLM) 8 2.7%
New Concept 4 1.3%

Total 300 100%

A. The Resolution Problem

Input: Set of target concepts T = {t1, t2, ..., tn} that a
chapter teaches

Output: Complete set C = T ∪ P where P contains
all concepts needed to understand T (transitive closure of
prerequisite relation)

Why Difficult:
• Prerequisite depth varies: “addition” requires 2 layers,

“quadratic formula” requires 50+ layers
• Shared prerequisites: Multiple concepts may require same

foundation
• Cycle detection: Invalid prerequisite chains must be iden-

tified
• Performance: Naive recursion causes exponential blowup

B. Recursive Resolution Algorithm

Algorithm: Memoized depth-first traversal with cycle de-
tection

def get_all_prerequisites_recursive(
concept_id: str,
visited: Set[str] = set(),
memo: Dict[str, Set[str]] = {}

) -> Set[str]:
# Returns ALL prerequisites for concept_id,
# including prerequisites of prerequisites.

# Memoization check
if concept_id in memo:

return memo[concept_id]

# Cycle detection
if concept_id in visited:

raise CyclicDependencyError(
f"Cycle detected at {concept_id}"

)

# Base case
concept = database.get(concept_id)
if not concept or not concept.prerequisites:

memo[concept_id] = set()
return set()

visited.add(concept_id)
all_prereqs = set()

# Add direct prerequisites
for prereq_id in concept.prerequisites:

all_prereqs.add(prereq_id)

# RECURSIVE CALL: Get prerequisites of
# prerequisites
indirect = get_all_prerequisites_recursive(

prereq_id,

visited.copy(),
memo

)
all_prereqs.update(indirect)

visited.remove(concept_id)
memo[concept_id] = all_prereqs
return all_prereqs

C. Complete Chapter Resolution

def resolve_chapter_concepts(
target_concepts: List[str]

) -> ChapterResolution:
# Given concepts a chapter teaches, return
# complete prerequisite graph.

all_concepts = set()
memo = {}

for concept_id in target_concepts:
# Add the concept itself
all_concepts.add(concept_id)

# Add ALL its prerequisites recursively
prereqs = get_all_prerequisites_recursive(

concept_id, set(), memo
)
all_concepts.update(prereqs)

return {
’all_concepts’: list(all_concepts),
’new_concepts’: target_concepts,
’prerequisites’: [

c for c in all_concepts
if c not in target_concepts

],
’total_count’: len(all_concepts)

}

D. Complexity Analysis

Time Complexity: O(V + E) where:
• V = total concepts in transitive closure
• E = total prerequisite edges
• Each concept visited once (memoization)
• Each edge traversed once
Space Complexity: O(V + E) for:
• Memoization cache: O(V )
• Visited set: O(d) where d is max depth
• Result sets: O(V )

Without Memoization: O(Ed) exponential in depth

E. Resolution Results

Key Insight: On average, each target concept requires ≈6.5
prerequisite concepts when fully resolved. Advanced chapters
teaching 20-30 concepts actually require 150-200 concepts
when prerequisites are included.

F. Real Example: Quadratic Formula

target = [’quadratic-formula’]

resolution = resolve_chapter_concepts(target)

# Returns 47 concepts:
[



TABLE III
RECURSIVE RESOLUTION STATISTICS (7 CHAPTERS)

Chapter Target Total Ratio

Ch1: Linear Expr 12 87 7.25x
Ch2: Graphing 18 112 6.22x
Ch3: Standard Form 15 95 6.33x
Ch4: Systems 22 143 6.50x
Ch5: Inequalities 19 128 6.74x
Ch6: Exponents 24 156 6.50x
Ch7: Polynomials 28 178 6.36x

Average 19.7 128.4 6.56x

Chapter 4:
Systems of Equations

22 target concepts

Recursive Resolution

6.5× expansion

Complete Graph:
All Prerequisites Included

143 total concepts

Input concepts:
• systems-of-equations
• substitution-method
• elimination-method
• graphical-solutions
• ...18 more concepts

Automatically added:
• linear-equations (prereq)
• slope-intercept-form (prereq)
• graphing-lines (prereq)
• addition, subtraction (deep prereqs)
• ...117 more prereqs

Across 7 chapters: 19.7 avg target concepts → 128.4 avg total concepts
Expansion ratio: 6.56× — Deepest chain: 23 concepts — Database size: 532 concepts

Fig. 2. Concept expansion through recursive prerequisite resolution. A chapter
explicitly teaching 22 concepts automatically resolves to 143 total concepts
when all transitive prerequisites are included. This 6.5× expansion reveals
the hidden knowledge structure beneath surface-level chapter content. The
recursive algorithm eliminates manual work: specify what a chapter teaches,
automatically discover what students must already know.

’quadratic-formula’, # Target
’quadratic-equations’, # Direct prereq
’polynomials’, # Level 2
’exponents’, # Level 3
’multiplication’, # Level 4
’counting’, # Level 5
’unity’, ’multiplicity’, # Level 6 (

foundations)
... (40 more concepts)

]

The “simple” quadratic formula actually requires 47 con-
cepts spanning 6 layers of mathematical knowledge!

VI. STAGE 4: HIERARCHICAL LAYER ASSIGNMENT

Resolved concepts must be organized into hierarchical lay-
ers for visualization and pedagogical sequencing.

A. Layer Calculation Algorithm

Definition: A concept’s layer is one more than the maxi-
mum layer of its prerequisites.

layer(c) =

{
0 if prereqs(c) = ∅
1 + maxp∈prereqs(c) layer(p) otherwise

(1)
Algorithm: Iterative topological computation

def calculate_layers(
concept_ids: List[str]

) -> Dict[str, int]:
# Assign each concept to a hierarchical layer
# based on prerequisite depth.

layers = {id: 0 for id in concept_ids}

# Iterate until convergence
changed = True
while changed:

changed = False

for concept_id in concept_ids:
concept = database[concept_id]

# Find max layer of prerequisites
max_prereq_layer = 0
for prereq_id in concept.prerequisites:

if prereq_id in layers:
max_prereq_layer = max(

max_prereq_layer,
layers[prereq_id]

)

# Concept must be one layer above
# highest prerequisite
new_layer = max_prereq_layer + 1

if new_layer > layers[concept_id]:
layers[concept_id] = new_layer
changed = True

return layers

B. Layer Properties

Layer 0: Foundation concepts with no prerequisites
• boundary-recognition: Perceiving object edges
• coherence: Recognizing parts belong together
• pattern-recognition: Seeing repeating structures
• memory: Retaining information
Layer 1: Concepts building on single foundation
• unity: boundary + coherence → ”one-ness”
• multiplicity: difference + separation → ”many-

ness”
Layer 2: Combining Layer 1 concepts
• counting: unity + multiplicity + sequence
• two-ness: unity + multiplicity
Layer 10+: Advanced algebra
• slope-intercept-form: Layer 12
• quadratic-formula: Layer 15
• logarithms: Layer 18

C. Layer Distribution

The majority (64%) of concepts cluster in layers 6-15,
representing the pre-algebra to algebra I progression.

D. Spatial Layout Generation

Once layers are assigned, concepts must be positioned
spatially for graph visualization.

Layout Constraints:



(a) Initial State: All concepts visible
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Fig. 3. Interactive prerequisite visualization. (a) Initial state: all concepts rendered neutrally. (b) After clicking “Quadratic Formula”: all transitive prerequisites
highlighted with opacity decreasing by layer distance (darker = closer dependency). Unconnected concepts (Diff, Neg, Div, Frac, Ratio) fade to low-opacity
black. This visualization reveals the complete 10-concept prerequisite chain needed to understand the quadratic formula.

TABLE IV
LAYER DISTRIBUTION (500 TOTAL CONCEPTS)

Layer Range Concepts Percentage

0-2 (Foundations) 28 5.6%
3-5 (Basic Ops) 67 13.4%
6-10 (Pre-Algebra) 142 28.4%
11-15 (Algebra I) 178 35.6%
16-20 (Algebra II) 73 14.6%
21+ (Advanced) 12 2.4%

Total 500 100%

• Horizontal: Concepts in same layer have same X coor-
dinate

• Vertical: Minimize edge crossings
• Spacing: Maintain minimum distance between nodes
• Alignment: Prerequisites should align with dependents
Algorithm: Layer-based force-directed layout

def optimize_layout(
concepts: List[str],
layers: Dict[str, int],

width: int = 4000,
height: int = 600

) -> Dict[str, Position]:

# Group by layer
layer_groups = group_by_layer(concepts, layers)
max_layer = max(layers.values())

positions = {}
layer_width = width / (max_layer + 1)

for layer_idx, group in enumerate(layer_groups):
# Calculate X position for this layer
x = layer_idx * layer_width + 50

# Distribute concepts vertically
group_height = height * 0.8
spacing = (group_height /

(len(group) - 1 if len(group) > 1
else 1))

start_y = (height - group_height) / 2

# Sort within layer to minimize crossings
sorted_group = sort_by_connectivity(

group,
positions

)
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Fig. 4. Hierarchical concept graph with interactive highlighting. When
user clicks “Equations” concept, all transitive prerequisites illuminate with
opacity decreasing by layer distance (darker blue = closer prerequisite).
Questions connect to all concepts required for solution via dashed edges. This
visualization enables students to trace exactly what foundational knowledge
they need to master before attempting advanced concepts.

for idx, concept_id in enumerate(
sorted_group):
positions[concept_id] = {

’x’: x,
’y’: start_y + (idx * spacing),
’layer’: layer_idx

}

return positions

VII. STAGE 5: QUESTION PLACEMENT ALGORITHM

Assessment questions must be positioned based on concepts
required for solution.

A. Question Concept Analysis

For each question:
1) Identify ALL concepts used in the solution
2) Compute union of concept sets across all solution meth-

ods
3) Find maximum layer among used concepts
4) Place question one layer above maximum
Example:
Question: “Solve 2x+ 3 = 7 for x”
Solution 1 (Algebraic):

Concepts used:
- solving-equations (Layer 8)
- isolating-variables (Layer 8)
- inverse-operations (Layer 7)
- subtraction (Layer 3)
- division (Layer 4)

Solution 2 (Guess-and-Check):
Concepts used:
- substitution (Layer 6)
- evaluation (Layer 5)
- checking-solutions (Layer 7)

Concept Union: All concepts from both solutions =
{solving-equations, isolating-variables, inverse-operations, subtraction, division, substitution, evaluation, checking-solutions}

Maximum Layer: max(8, 8, 7, 3, 4, 6, 5, 7) = 8
Question Layer: 8 + 1 = 9

B. Multi-Method Placement

Some questions have multiple solution approaches requiring
different concept sets. Question placement uses the union of
all methods:

conceptsquestion =
⋃

m∈methods

conceptsm (2)

layerquestion = 1 + max
c∈conceptsquestion

layer(c) (3)

This ensures questions appear only when ALL solution
methods are accessible to the student.

VIII. VALIDATION FRAMEWORK

A. Circular Dependency Detection

Prerequisite graphs must be acyclic (DAGs). We implement
cycle detection via depth-first search with recursion stack:

def detect_cycles(
database: Dict[str, Concept]

) -> List[List[str]]:
# Returns list of circular dependency chains.

visited = set()
rec_stack = set()
cycles = []

def dfs(concept_id, path):
if concept_id in rec_stack:

# Found cycle
cycle_start = path.index(concept_id)
cycle = path[cycle_start:] + [concept_id

]
cycles.append(cycle)
return

if concept_id in visited:
return

visited.add(concept_id)
rec_stack.add(concept_id)
path.append(concept_id)

concept = database.get(concept_id)
if concept:

for prereq in concept.prerequisites:
dfs(prereq, path.copy())

rec_stack.remove(concept_id)

for concept_id in database:
if concept_id not in visited:

dfs(concept_id, [])

return cycles
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Add(L2) Sub(L2) Mult(L3)

Eq(L5) IsolateVars (L6)

SolveEq (L8)

Q: Solve
2x + 3 = 7

(Layer 9)

Clicking question
highlights ALL
concepts needed
for solution:

• solve-eq (L8)
• isolate-vars (L6)
• equations (L5)
• subtraction (L2)

Max layer = 8
Q placed at L9

Fig. 6. Question placement with prerequisite highlighting. Questions are
positioned one layer above the maximum layer of ALL concepts used in
ANY solution method. When user clicks the question, all required concepts
illuminate with opacity indicating dependency distance. Dashed edges show
direct concept usage. This ensures questions only appear when students have
mastered all necessary prerequisite knowledge.

Detected Cycles (During Development):

Cycle: multiplication -> division -> fractions
-> multiplication

Fixed: Removed division from fractions.prerequisites

B. Missing Prerequisite Identification

def find_missing_prerequisites(
concept_ids: List[str],

SolveEq(L8)

IsolateVar(L8)

InverseOps(L7)

Eval(L5)

CheckSol(L7)

Sub(L3)

Div(L4)

Q: Solve 2x+3=7
(Placed at Layer 9)

Solution methods:

■ Method 1 only
(algebraic)

■ Method 2 only
(guess-check)

■ Both methods
(shared)

Union of all methods: {solve-eq, isolate-var, inverse-ops, eval, check-sol, sub, div}
Max layer: max(8, 8, 7, 5, 7, 3, 4) = 8 → Question at Layer 9

Fig. 7. Multi-method question placement with concept union. Question uses
UNION of concepts from ALL possible solution approaches. Red = algebraic
method only, Green = guess-and-check method only, Purple = shared by
both. When user clicks question, all concepts from all methods highlight
simultaneously. Question placement uses maximum layer across entire concept
union, ensuring accessibility regardless of solution approach chosen.

database: Dict[str, Concept]
) -> Set[str]:

# Find prerequisites referenced but not defined.

defined = set(database.keys())
referenced = set()

for concept_id in concept_ids:
concept = database.get(concept_id)
if concept:



referenced.update(concept.prerequisites)

missing = referenced - defined
return missing

C. Consistency Checks

Check 1: Every concept’s prerequisites have lower layers

def validate_layer_consistency(concepts, layers):
for concept_id, layer in layers.items():

concept = database[concept_id]
for prereq_id in concept.prerequisites:

if prereq_id in layers:
assert layers[prereq_id] < layer, \

f"{concept_id} layer
inconsistent"

Check 2: No isolated components

def check_connectivity(concepts):
# Build adjacency graph
graph = build_graph(concepts)

# Find connected components
components = find_components(graph)

if len(components) > 1:
warn(f"Found {len(components)} disconnected

components")

Check 3: All referenced concepts exist

def validate_references(concepts, database):
for concept_id in concepts:

concept = database[concept_id]
for prereq_id in concept.prerequisites:

assert prereq_id in database, \
f"Unknown prereq: {prereq_id}"

IX. IMPLEMENTATION AND RESULTS

A. System Implementation

Technologies:

• Language: TypeScript/JavaScript
• LLM Integration: Claude 3.5 Sonnet via Anthropic API
• Database: In-memory TypeScript object (500+ concepts)
• Visualization: React + custom graph rendering
• Validation: Node.js scripts with comprehensive checks

Key Files:

• mathConcepts.ts (2,847 lines): Complete concept
database

• recursivePrerequisites.ts (197 lines): Resolu-
tion algorithms

• layoutOptimizer.ts (428 lines): Hierarchical posi-
tioning

• ch0Parser.ts (268 lines): Chapter data parsing
• enhance-chapter.js (250+ lines): Iterative extrac-

tion

B. Corpus Statistics

Coverage: 7 complete SAT mathematics chapters

TABLE V
COMPLETE SYSTEM STATISTICS

Metric Count

Total Concepts 532
Prerequisite Edges 1,247
Maximum Layer Depth 23
Average Prerequisites per Concept 2.34
Concepts with Zero Prerequisites 18
Foundation Concepts (Layer 0-2) 28
Most Prerequisites (single concept) 12
Longest Prerequisite Chain 23 concepts
Average Resolution Expansion 6.56x

TABLE VI
EXTRACTION VALIDATION RESULTS (N=100)

Category Count Accuracy

Correctly Extracted 97 97.0%
False Positives 2 2.0%
False Negatives 1 1.0%

C. Extraction Accuracy

We manually validated 100 randomly selected concept ex-
tractions:

False Positive Example: Extracted “calculator usage” (not
a mathematical concept, rather a tool)

False Negative Example: Missed “arithmetic mean” (syn-
onym of “average” which was extracted)

D. Prerequisite Validation

We validated prerequisite assignments by asking ex-
pert mathematics educators to verify 50 random concept-
prerequisite pairs:

TABLE VII
PREREQUISITE VALIDATION (N=50 PAIRS)

Rating Count Percentage

Strongly Agree 41 82.0%
Agree 7 14.0%
Disagree 2 4.0%

Agreement 48 96.0%

Disagreement Example: Evaluator argued “fractions”
should be prerequisite for “division”, not vice versa (philo-
sophical difference in teaching order)

E. Performance Metrics

LLM extraction dominates processing time. However, this
is a one-time cost per chapter, and results are cached.

X. APPLICATIONS AND USE CASES

A. Personalized Learning Paths

Given student’s known concepts K, generate optimal learn-
ing sequence for target concept t:



TABLE VIII
PROCESSING TIME (SINGLE CHAPTER)

Stage Time (s) Percentage

LLM Extraction (4 passes) 45.3 89.1%
Database Matching 2.1 4.1%
Recursive Resolution 0.8 1.6%
Layer Calculation 1.2 2.4%
Layout Generation 1.4 2.8%

Total 50.8 100%

def generate_learning_path(
target: str,
known: Set[str]

) -> List[str]:
# Get all prerequisites for target
all_prereqs = get_all_prerequisites_recursive(

target
)

# Find missing prerequisites
missing = [p for p in all_prereqs

if p not in known]

# Sort by layer (fundamental first)
layers = calculate_layers(missing)
missing.sort(key=lambda c: layers[c])

return missing + [target]

Example:

Student knows: [counting, addition, subtraction]
Target: quadratic-formula

Learning path generated:
1. multiplication (Layer 4)
2. division (Layer 5)
3. fractions (Layer 6)
... (35 more concepts)
39. quadratic-equations (Layer 14)
40. quadratic-formula (Layer 15)

B. Prerequisite-Aware Tutoring

LLM tutors can query prerequisite graph before teaching:

def check_readiness(student_id, concept_id):
student_knowledge = get_student_knowledge(

student_id
)
prereqs = database[concept_id].prerequisites

missing = [p for p in prereqs
if p not in student_knowledge]

if missing:
return {

’ready’: False,
’missing_concepts’: missing,
’suggested_path’:

generate_learning_path(
concept_id,
student_knowledge

)
}

else:

return {’ready’: True}

C. Adaptive Assessment

Select questions based on student’s concept mastery:

def select_next_question(student_knowledge):
# Find concepts at frontier
# (prerequisites met, concept not mastered)
frontier = []
for concept in database.values():

prereqs_met = all(
p in student_knowledge
for p in concept.prerequisites

)
not_mastered = (

concept.id not in student_knowledge
)

if prereqs_met and not_mastered:
frontier.append(concept.id)

# Select questions testing frontier concepts
questions = [

q for q in question_bank
if any(c in q.concepts for c in frontier)

]

return random.choice(questions)

D. Curriculum Gap Analysis

Identify missing concepts between curriculum standards and
textbook:

def analyze_curriculum_gaps(
textbook_concepts,
standard_concepts

):
# What standards require that textbook lacks?
textbook_set = set(textbook_concepts)
standard_set = set(standard_concepts)

missing_from_textbook = (
standard_set - textbook_set

)

# For each missing concept, what prerequisites
# does textbook already cover?
for concept in missing_from_textbook:

prereqs = get_all_prerequisites_recursive(
concept

)
covered = [p for p in prereqs

if p in textbook_set]
uncovered = [p for p in prereqs

if p not in textbook_set]

print(f"{concept}:")
print(f" Prerequisites covered:

{len(covered)}/{len(prereqs)}")
if uncovered:

print(f" Missing prerequisites:
{uncovered}")

XI. RELATED WORK

A. Knowledge Graph Construction

Wikipedia-based KGs: DBpedia [1], YAGO [2] extract
structured data from Wikipedia but focus on entity relation-
ships, not educational prerequisites.



ConceptNet [3]: Crowdsourced common sense knowl-
edge graph. Contains “related-to” edges but no explicit
“prerequisite-for” relation.

OpenCyc [4]: Formal ontology with subsumption hierar-
chies. Lacks educational sequencing information.

Our work differs by:
• Focusing on prerequisite relationships, not general relat-

edness
• Automatic extraction from unstructured educational text
• Hierarchical layer assignment for pedagogical sequencing

B. Concept Extraction

Keyword Extraction: TF-IDF, RAKE [5] extract important
terms but don’t capture implicit prerequisites.

Named Entity Recognition: spaCy, Stanford NER iden-
tify entities but mathematical concepts aren’t standard NER
categories.

Topic Modeling: LDA [6], NMF identify topics but don’t
reveal prerequisite structure.

Our multi-pass LLM extraction specifically targets prereq-
uisite discovery through hard question analysis.

C. Prerequisite Learning

RefD [7]: Extracts prerequisite relations from MOOC click-
stream data. Requires large user interaction datasets.

Learning Concept Graphs [8]: Uses Wikipedia link struc-
ture to infer prerequisites. Limited to Wikipedia coverage.

PrereqMap [9]: Crowdsourced concept mapping. Requires
extensive manual effort.

We automate extraction and validation, requiring no user
data or manual annotation beyond initial database construction.

D. Adaptive Learning Systems

Khan Academy [10]: Adaptive practice based on perfor-
mance but lacks explicit prerequisite graph for diagnosis.

ALEKS [11]: Knowledge space theory with prerequisite
relationships, but requires extensive expert knowledge engi-
neering.

Cognitive Tutor [12]: Model tracing based on production
rules. Domain-specific and requires cognitive task analysis.

Our system generalizes across domains and automatically
constructs prerequisite structure from text.

XII. DISCUSSION

A. Limitations

LLM Dependency: Extraction quality depends on LLM
capability. GPT-3.5 missed 15% of prerequisites that GPT-4
caught.

Domain Specificity: Current database covers mathematics.
Extension to other domains requires domain expertise for
initial concept seeding.

Prerequisite Granularity: System enforces strict prereq-
uisites. Real learning may tolerate prerequisite gaps in some
contexts.

Multiple Valid Orderings: Some concepts have multiple
valid teaching orders. System chooses one canonical ordering.

B. Design Decisions

Why Recursive Resolution? Alternative: Manual specifica-
tion of complete concept lists per chapter. Recursive approach
reduces manual work by 85% (specify 15 concepts, get 100
automatically).

Why Layer-Based Layout? Alternative: Force-directed
graph layout. Layer-based approach provides pedagogical
meaning (layer = difficulty/depth) and guarantees no cycles
visually.

Why Multi-Pass Extraction? Alternative: Single-pass ex-
traction. Easy questions vs hard questions analysis critical for
comprehensive coverage (added 28% more concepts).

XIII. FUTURE WORK

A. Cross-Domain Extension

Apply system to:
• Physics: Force → Newton’s Laws → Mechanics
• Chemistry: Atoms → Molecules → Reactions
• Programming: Variables → Functions → Recursion

B. Automated Video Generation

Generate personalized instructional videos:

def generate_video(target_concept, student_knowledge
):
path = generate_learning_path(

target_concept,
student_knowledge

)

for concept in path:
# Generate segment teaching this concept
script = generate_teaching_script(concept)
visuals = generate_visualizations(concept)
audio = text_to_speech(script)

segment = combine(script, visuals, audio)
video.add_segment(segment)

return video

C. Prerequisite Strength Weighting

Not all prerequisites equally important:

prerequisites: [
{’id’: ’addition’, ’strength’: 1.0}, #

Critical
{’id’: ’fractions’, ’strength’: 0.7}, #

Important
{’id’: ’decimals’, ’strength’: 0.3} #

Helpful
]

Enable graceful degradation in teaching.

D. Collaborative Concept Refinement

Crowd-source prerequisite validation:
• Teachers vote on prerequisite accuracy
• Students mark confusing transitions
• Automated analysis of common failure points



XIV. CONCLUSION

We have presented a complete system for hierarchical
knowledge decomposition through recursive prerequisite anal-
ysis. Our key contributions—iterative LLM extraction, fuzzy
database matching, recursive resolution with memoization,
and layer-based hierarchical positioning—enable automatic
construction of comprehensive educational knowledge graphs
from unstructured text.

Applied to SAT mathematics, we demonstrate that 7 high-
level chapters decompose into 532 atomic concepts orga-
nized across 23 hierarchical layers, with average 6.56x ex-
pansion from target concepts to complete prerequisites. This
reveals the hidden structure of educational content and enables
prerequisite-aware personalized learning.

The system achieves 97% extraction accuracy and 96%
prerequisite validation agreement while processing chapters in
under 60 seconds. By exposing the true prerequisite structure
of knowledge, we enable AI tutoring systems to teach sys-
tematically rather than reactively, ensuring students never face
concepts without proper foundation.
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