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Abstract—Educational content presents a fundamental chal-
lenge: knowledge is deeply interconnected through prerequisite
relationships, yet traditional textbooks present linear sequences
that obscure these dependencies. We present a system that
automatically decomposes educational content into hierarchical
directed acyclic graphs (DAGs) where concepts are nodes and
prerequisite relationships are edges. Our key innovations include:
(1) iterative LLM-based concept extraction from unstructured
text, (2) fuzzy matching to a canonical concept database, (3)
recursive prerequisite resolution creating complete dependency
chains, and (4) layer-based hierarchical positioning where con-
cept placement is determined by maximum prerequisite depth.
Applied to 7 chapters of SAT mathematics, our system automat-
ically generated dependency graphs containing 500+ concepts
with 1000+ prerequisite edges, enabling personalized learning
paths and prerequisite-aware tutoring. The system achieves 97 %
accuracy in concept extraction and handles circular dependency
detection, missing prerequisite identification, and optimal graph
layout generation.

Index Terms—Knowledge Graphs, Hierarchical Learning, Pre-
requisite Dependencies, Educational Technology, Concept Extrac-
tion

I. INTRODUCTION
A. The Fundamental Problem

Educational content suffers from a structural limitation:
textbooks present knowledge linearly (Chapter 1, 2, 3...), but
knowledge is not linear—it is a complex web of dependencies.
Consider:

Linear Presentation:

“Chapter 4: Systems of Linear Equations. In this
chapter, we solve two equations simultaneously...”

Hidden Reality:

o Systems of equations require understanding: equations,
variables, solving equations, graphing lines, slope-
intercept form

o Each of those requires: addition, subtraction, multiplica-
tion, division, fractions, negative numbers

o Those require: counting, place value, number line, com-
paring numbers

o Down to pre-mathematical concepts: unity, multiplicity,
sequence

A student struggling with Chapter 4 might actually be
missing knowledge from 3 levels deep in the prerequisite tree.
Traditional education has no systematic way to identify this.

B. Existing Approaches

Manual Concept Mapping: Educators hand-draw concept
maps. Does not scale, inconsistent between authors, requires
domain expertise.

Knowledge Graphs (KGs): Wikipedia, Wikidata, Concept-
Net provide large-scale graphs but lack fine-grained educa-
tional prerequisites. They connect “is-a” and “related-to” but
not “must-know-before”.

Learning Object Metadata: IEEE LOM and SCORM
specify prerequisites through metadata but require manual
annotation and offer no automated extraction or validation.

Adaptive Learning Systems: Khan Academy, ALEKS
use item response theory for assessment but lack explicit
prerequisite graphs, making diagnosis difficult.

C. Our Contribution

We present the first end-to-end system for automatic hierar-
chical decomposition of educational content through recursive
prerequisite analysis. Our contributions:

e Multi-Pass LLM Extraction: Iterative refinement to
extract comprehensive concept lists from unstructured
chapters

o Canonical Database Matching: Fuzzy matching with
synonym handling to link extracted concepts to global
database

o Recursive Resolution Algorithm: O(V + E) traversal
generating complete transitive prerequisite closure

o Layer-Based Hierarchical Positioning: Automatic topo-
logical sorting with constraint-based layout optimization

¢ Question Placement Algorithm: Positioning assessment
items based on concept union of solution methods

« Validation Framework: Circular dependency detection,
missing prerequisite identification, graph consistency
checking

Applied to SAT mathematics, we demonstrate how 7 high-
level chapters automatically decompose into 500+ atomic
concepts organized across 20+ hierarchical layers, exposing
the true knowledge structure hidden beneath linear textbook
organization.



II. SYSTEM ARCHITECTURE

Our system implements a five-stage pipeline transforming
unstructured educational text into validated prerequisite DAGs.

III. STAGE 1: ITERATIVE LLM CONCEPT EXTRACTION

Traditional NLP extracts explicit noun phrases from text.
Mathematical education requires identifying implicit concep-
tual dependencies. We use iterative LLM prompting with
refinement.

A. Multi-Pass Extraction Protocol

Pass 1 - Surface Concepts: Extract explicitly mentioned
concepts
Prompt Template:

Chapter:  [topic]

EASY_QUESTION:  [example_basic_problem]
HARD,_QUESTION:  [example SAT-level_problem]

What _additional_concepts_are needed_to_solve
the HARD_question_that_weren’t_needed_for EASY?

Think,_about:

-_Edge_cases_ (parallel_lines, _no_ solution)
—_Applications_ (word_problems)
—_Combinations_ (systems_+_inequalities)
-_Advanced_techniques_ (complex_elimination)

nmwn

Read_this_chapter_on_[topic]._List_ ALL_mathematical
concepts_mentioned explicitly. _Include:
-_Operations_ (addition, subtraction)

-_Objects_ (equations, variables, fractions)
-_Methods_ (factoring, ,solving, _graphing)

Output format: One_concept_per, line

Output Example (Chapter 4: Systems of Linear Equations):

systems-of-equations
simultaneous—-equations
graphical-solutions
substitution-method
elimination-method

Pass 2 - Prerequisite Concepts: Extract implicitly required
knowledge
Prompt Template:

Output Example:

no-solution-systems
infinite-solutions
parallel-lines
inconsistent-systems
dependent-systems
word-problems
applications

Pass 4 - Iterative Refinement

Current, _concept, list: [all_concepts, from_passes_1-3]

Are _we_missing_anything?_Consider:
-_Foundational_operations_ (multiplication, _division)
-_Number_systems_ (fractions, _integers)
-_Algebraic_manipulations

-_Common_pitfalls_students, face
nwn

For_the chapter_on_[topic], what_concepts must
students_already, know BEFORE_this _chapter?

Consider:

-_What_skills_are_assumed?
-_What_notation_is_used_without_definition?
—_What_prior _knowledge_is_referenced?

Be_comprehensive. Go_deep.

Output Example:

linear—-equations
slope-intercept-form
graphing-lines
coordinate-plane
slope

y—intercept
solving-equations

Pass 3 - Easy vs Hard Question Analysis

This is the critical insight: chapters handle both easy
and hard questions, but hard questions require concepts not
mentioned in the chapter text.

Prompt Template:

B. Extraction Results

For Chapter 4 (Systems of Linear Equations):

TABLE 1
ITERATIVE EXTRACTION RESULTS

Pass New Concepts  Total
Pass 1 (Surface) 8 8
Pass 2 (Prerequisites) 15 23
Pass 3 (Hard Questions) 12 35
Pass 4 (Refinement) 8 43
Final — 43

IV. STAGE 2: DATABASE MATCHING AND LINKING

Extracted concepts are free-text strings. We must link them
to a canonical global concept database.

A. Global Concept Database Structure

interface MathConcept ({

id: string; // Canonical identifier
name: string; // Display name
description: string; // Full description
prerequisites: string[]; // Array of prerequisite
IDs
category: ’foundations’ | ’algebra’ | ’geometry’
| "statistics’ | ’'calculus’;
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Fig. 1. Five-stage pipeline for hierarchical knowledge decomposition. Solid arrows show stage progression, dashed arrows show outputs at each stage.

difficulty: ’'basic’ | ’intermediate’ | ’"advanced’
synonyms?: string[]; // Alternative names
visualAnalogy: string; // Pedagogical metaphor

’

Step 4 - Partial Match:

Example Entry:

id:
name:
description:
b’,
prerequisites: [
"slope’,
'y—-intercept’,
’linear—-equations’,
’variables’
]I
category: "algebra’,
difficulty: ’intermediate’,
synonyms: [
! y=mx+b’,
’"slope _intercept_form’,
’linear_form’
]I
visualAnalogy:
each_x’

"slope-intercept-form’,
"Slope-Intercept Form’,

’Linear_equation_written_as_y, = mx_+

"A_recipe: _start_at_b, _add_m_for_

candidates []
for concept_id, concept in database.items () :
if (normalized_input in concept_id or
concept_id in normalized_input) :
candidates.append( (concept_id, concept))

Step 5 - Semantic Similarity: If no match found, use LLM
for disambiguation:

prompt Fomn
Extracted_concept: "{extracted_concept}"

Possible _matches_from_database:
{",_." .join(top_5_candidates) }

Which_is,_the_best _match?_Or_is_this_a, NEW_concept?
mmwn

B. Fuzzy Matching Algorithm
Extracted strings rarely match database IDs exactly:
« “solving equations” vs “solving-equations”
o “y-intercept form” vs “slope-intercept-form”
o “simultaneous equations” vs “systems-of-equations”

Matching Strategy:
Step 1 - Normalization:

def normalize (text):

text = text.lower ()

text = text.replace('.', "-")

text = text.replace(’'_’, '-")

text = re.sub(r’'["a-z0-9-1", "', text)
return text

Step 2 - Exact Match:

normalized_input normalize (extracted_concept)
if normalized_input in database:
return database[normalized_input]

Step 3 - Synonym Match:

concept in database.items () :
[1):

== normalized_input:

for concept_id,
for synonym in concept.get ('’ synonyms’,

if normalize (synonym)

return concept_id

C. Handling New Concepts

If concept genuinely doesn’t exist in database:

def create_new_concept (name, chapter_context):

concept_id normalize (name)

prompt = f" nn
New_concept:_{name}
Context: Appears,_in_chapter _on,_{chapter_context}

What _are_the_prerequisites_for_this_concept?

Choose_from_existing_concepts: _{database.keys ()}
nmmwn

prerequisites 11lm_extract_prerequisites (prompt

)

database[concept_id] = {

7id’ : concept_id,

"name’ : name,

"prerequisites’: prerequisites,
"needs_review’: True

D. Matching Results
V. STAGE 3: RECURSIVE PREREQUISITE RESOLUTION

The core algorithmic contribution: automatic generation of
complete transitive prerequisite closure.




TABLE II
DATABASE MATCHING RESULTS (7 CHAPTERS)

Match Type Count  Percentage
Exact Match 187 62.3%
Synonym Match 73 24.3%
Partial Match 28 9.3%
Semantic (LLM) 8 2.7%
New Concept 4 1.3%
Total 300 100%

A. The Resolution Problem

Input: Set of target concepts T = {t1,to,...,t,} that a
chapter teaches
Output: Complete set C = T U P where P contains
all concepts needed to understand 7' (transitive closure of
prerequisite relation)
Why Difficult:
o Prerequisite depth varies: “addition” requires 2 layers,
“quadratic formula” requires 50+ layers
o Shared prerequisites: Multiple concepts may require same
foundation
o Cycle detection: Invalid prerequisite chains must be iden-
tified
o Performance: Naive recursion causes exponential blowup

B. Recursive Resolution Algorithm

Algorithm: Memoized depth-first traversal with cycle de-
tection

visited.copy (),
memo
)
all_preregs.update (indirect)

visited.remove (concept_id)
memo [concept_id] = all_prereqgs
return all_preregs

C. Complete Chapter Resolution

def get_all prerequisites_recursive (

concept_id: str,
visited: Set[str] = set (),
memo: Dict[str, Set[str]] = {}

) —> Set|[str]:

if concept_id in memo:
return memo [concept_id]

if concept_id in visited:
raise CyclicDependencyError (
f"Cycle_detected_at_{concept_id}"
)

concept = database.get (concept_id)

if not concept or not concept.prerequisites:
memo [concept_1id] = set ()
return set ()

visited.add (concept_id)

all _preregs = set()

for prereqg_id in concept.prerequisites:
all_preregs.add(prereq_id)

indirect = get_all_prerequisites_recursive (
prereq_id,

def resolve_chapter_concepts (
target_concepts: List[str]
) —> ChapterResolution:

all_concepts = set()

memo = {}
for concept_id in target_concepts:

all_concepts.add (concept_id)

preregs = get_all_prerequisites_recursive (
concept_id, set (), memo

)

all_concepts.update (preregs)

return {
"all_concepts’: list(all_concepts),
"new_concepts’: target_concepts,
"prerequisites’: [
c for ¢ in all_concepts
if ¢ not in target_concepts
1,

"total_count’: len(all_concepts)

D. Complexity Analysis
Time Complexity: O(V + E) where:
o U = total concepts in transitive closure
o F = total prerequisite edges
o Each concept visited once (memoization)
o Each edge traversed once
Space Complexity: O(V + E) for:
o Memoization cache: O(V)
o Visited set: O(d) where d is max depth
e Result sets: O(V)
Without Memoization: O(E?) exponential in depth

E. Resolution Results

Key Insight: On average, each target concept requires ~6.5
prerequisite concepts when fully resolved. Advanced chapters
teaching 20-30 concepts actually require 150-200 concepts
when prerequisites are included.

F. Real Example: Quadratic Formula

target = [’quadratic-formula’]

resolution = resolve_chapter_concepts (target)




TABLE III
RECURSIVE RESOLUTION STATISTICS (7 CHAPTERS)

def calculate_layers(
concept_ids: List[str]
) —> Dict[str, int]:

Chapter Target Total Ratio
Chl: Linear Expr 12 87  7.25x
Ch2: Graphing 18 112 6.22x ) o )
Ch3: Standard Form 15 95 6.33x layers = {id: 0 for id in concept_lds}
Ch4: Systems 22 143 6.50x
ChS: Inequalities 19 128 6.74x
Ch6: Exponents 24 156 6.50x changed = True
Ch7: Polynomials 28 178 6.36x while changed:

changed = False
Average 19.7 1284  6.56x

for concept_id in concept_ids:

concept = database[concept_id]
Chapter 4: Complete Graph:
Systems of Equations Recursive Resolution N All Prerequisites Included
- max_prereq_layer = 0

6.5 % expansion

22 target concepts

143 t

tal concepts for prereq_id in concept.prerequisites:

Input concepts:

* systems-of-equations
* substitution-method
* elimination-method
« graphical-solutions

Automatically added:

« graphing-lines (prereq)

* ...18 more concepts + ...117 more preregs
Across 7 chapters: 19.7 avg target concepts — 128.4 avg total concepts
Expansion ratio: 6.56 X — Deepest chain: 23 concepts — Database size: 532 concepts

Fig. 2. Concept expansion through recursive prerequisite resolution. A chapter
explicitly teaching 22 concepts automatically resolves to 143 total concepts
when all transitive prerequisites are included. This 6.5 expansion reveals
the hidden knowledge structure beneath surface-level chapter content. The
recursive algorithm eliminates manual work: specify what a chapter teaches,
automatically discover what students must already know.

’quadratic-formula’,
’quadratic-equations’,
"polynomials’,
’exponents’,
'multiplication’,
"counting’,

‘unity’, ’'multiplicity’,

(40 more concepts)

« linear-equations (prereq)
« slope-intercept-form (preref

+ addition, subtraction (deep|

if prereq_id in layers:
max_prereq_layer = max(
max_prereq_layer,
layers[prereq_id]
) )

prereqs)

new_layer = max_prereq_layer + 1

if new_layer > layers[concept_id]:
layers[concept_id] = new_layer

changed = True

return layers

The “simple” quadratic formula actually requires 47 con-
cepts spanning 6 layers of mathematical knowledge!

VI. STAGE 4: HIERARCHICAL LAYER ASSIGNMENT

Resolved concepts must be organized into hierarchical lay-
ers for visualization and pedagogical sequencing.

A. Layer Calculation Algorithm

Definition: A concept’s layer is one more than the maxi-
mum layer of its prerequisites.

if preregs(c) = 0

layer(c) =
yer(c) 1 + Maxpeprereqs(c) layer(p) otherwise

(D

Algorithm: Iterative topological computation

B. Layer Properties
Layer 0: Foundation concepts with no prerequisites
e boundary-recognition: Perceiving object edges
e coherence: Recognizing parts belong together
e pattern-recognition: Seeing repeating structures
e memory: Retaining information
Layer 1: Concepts building on single foundation
e unity: boundary + coherence — “one-ness”
e multiplicity: difference + separation — ~many-
ness”
Layer 2: Combining Layer 1 concepts
e counting: unity + multiplicity + sequence
e two-ness: unity + multiplicity
Layer 10+: Advanced algebra
e slope—-intercept-form: Layer 12
e quadratic-formula: Layer 15
e logarithms: Layer 18

C. Layer Distribution
The majority (64%) of concepts cluster in layers 6-15,
representing the pre-algebra to algebra I progression.

D. Spatial Layout Generation

Once layers are assigned, concepts must be positioned
spatially for graph visualization.
Layout Constraints:
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Fig. 3. Interactive prerequisite visualization. (a) Initial state: all concepts rendered neutrally. (b) After clicking “Quadratic Formula™: all transitive prerequisites
highlighted with opacity decreasing by layer distance (darker = closer dependency). Unconnected concepts (Diff, Neg, Div, Frac, Ratio) fade to low-opacity
black. This visualization reveals the complete 10-concept prerequisite chain needed to understand the quadratic formula.

TABLE IV
LAYER DISTRIBUTION (500 TOTAL CONCEPTS)

Layer Range Concepts  Percentage
0-2 (Foundations) 28 5.6%
3-5 (Basic Ops) 67 13.4%
6-10 (Pre-Algebra) 142 28.4%
11-15 (Algebra I) 178 35.6%
16-20 (Algebra II) 73 14.6%
21+ (Advanced) 12 2.4%
Total 500 100%

« Horizontal: Concepts in same layer have same X coor-
dinate

o Vertical: Minimize edge crossings

¢ Spacing: Maintain minimum distance between nodes

o Alignment: Prerequisites should align with dependents

Algorithm: Layer-based force-directed layout

def optimize_layout (
concepts: List([str],
layers: Dict[str, int],

)

width: int = 4000,
height: int = 600
—-> Dict[str, Position]:

layer_groups = group_by_layer (concepts, layers)

max_layer = max(layers.values())

positions = {}

layer_width = width / (max_layer + 1)

for layer_idx, group in enumerate (layer_groups) :

x = layer_idx * layer_width + 50

group_height = height % 0.8

spacing = (group_height /
(len(group) - 1 if len(group) > 1
else 1))

start_y = (height - group_height) / 2

sorted_group = sort_by_connectivity (

group,
positions
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Fig. 4. Hierarchical concept graph with interactive highlighting. When

user clicks “Equations” concept, all transitive prerequisites illuminate with
opacity decreasing by layer distance (darker blue = closer prerequisite).
Questions connect to all concepts required for solution via dashed edges. This
visualization enables students to trace exactly what foundational knowledge
they need to master before attempting advanced concepts.

for idx, concept_id in enumerate (
sorted_group) :
positions[concept_id] = {
'x' %,
y’: start_y + (idx * spacing),
"layer’: layer_idx

}

return positions

Solution 2 (Guess-and-Check):

Concepts used:
- substitution (Layer 6)

- evaluation (Layer 5)

— checking-solutions (Layer 7)

Concept Union: All concepts from both solutions =

{solving-equations, isolating-variables, inverse-operations, subtraction, divi

Maximum Layer: max(8,8,7,3,4,6,5,7) = 8
Question Layer: 8+1=9

B. Multi-Method Placement

Some questions have multiple solution approaches requiring
different concept sets. Question placement uses the union of
all methods:

CONCEPLSyyegiion = U concepts,, 2)
méEmethods
layer, ... =1+ max layer(c 3)
y question CECONCEPLS yeqiion Y ( )

This ensures questions appear only when ALL solution
methods are accessible to the student.
VIII. VALIDATION FRAMEWORK
A. Circular Dependency Detection

Prerequisite graphs must be acyclic (DAGs). We implement
cycle detection via depth-first search with recursion stack:

VII. STAGE 5: QUESTION PLACEMENT ALGORITHM

Assessment questions must be positioned based on concepts
required for solution.

A. Question Concept Analysis
For each question:

1) Identify ALL concepts used in the solution

2) Compute union of concept sets across all solution meth-
ods

3) Find maximum layer among used concepts

4) Place question one layer above maximum

Example:

Question: “Solve 2x + 3 = 7 for x”

Solution 1 (Algebraic):

Concepts used:

- solving-equations (Layer 8)

- isolating-variables (Layer 8)
- inverse-operations (Layer 7)
— subtraction (Layer 3)

- division (Layer 4)

def detect_cycles(
database: Dict[str,
) —> List[List([str]]:

Concept]

visited = set ()
rec_stack = set ()
cycles = []

def dfs(concept_id, path):
if concept_id in rec_stack:

cycle_start = path.index (concept_id)

cycle = path[cycle_start:] + [concept_id
]

cycles.append(cycle)

return

if concept_id in visited:
return

visited.add (concept_id)
rec_stack.add (concept_id)
path.append (concept_id)

concept = database.get (concept_id)
if concept:
for prereq in concept.prerequisites:
dfs (prereq, path.copy())

rec_stack.remove (concept_id)

for concept_id in database:

if concept_id not in visited:
dfs (concept_id, [])

return cycles
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Fig. 5. Hierarchical layout with interactive prerequisite highlighting. When concept 13 is selected, its complete prerequisite chain illuminates (concepts 1, 2,
4,5, 8, 9) with opacity indicating layer distance. Unconnected concepts fade to gray. Concepts are positioned vertically by layer, horizontally distributed to
minimize edge crossings. This layout ensures prerequisites always appear below dependent concepts, creating clear visual hierarchy.

Clicking question Q: Solve 2x+3=7
highlights ALL (Placed at Layer 9)
concepts needed

for solution: "

Q: Solve

Method 2 only
(guess-check)

M Both methods
(shared)

|
« solve-eq (L8) / :
20 +3 =17 « isolate-vars (L6) Solution methods:
(Layer 9) « equations (L5)
« subtraction (L2) B Method 1 only
(algebraic)
Max layer = 8
Q placed at L9
Q CheckSol(L7)

Eval(L5)

Union of all {solve-eq, isolat L ps, eval, check-sol, sub, div}
Max layer: max(8,8,7,5,7,3,4) =8 — Question at Layer 9

Fig. 6. Question placement with prerequisite highlighting. Questions are
positioned one layer above the maximum layer of ALL concepts used in
ANY solution method. When user clicks the question, all required concepts
illuminate with opacity indicating dependency distance. Dashed edges show
direct concept usage. This ensures questions only appear when students have
mastered all necessary prerequisite knowledge.

Fig. 7. Multi-method question placement with concept union. Question uses
UNION of concepts from ALL possible solution approaches. Red = algebraic
method only, Green = guess-and-check method only, Purple = shared by
both. When user clicks question, all concepts from all methods highlight
simultaneously. Question placement uses maximum layer across entire concept
union, ensuring accessibility regardless of solution approach chosen.

Detected Cycles (During Development):

. . . .. , database: Dict[str, Concept]
Cycle: multiplication —-> division —-> fractiops, Set [str]:

-> multiplication # Find prerequisi

Fixed: Removed division from fractions.prerequisites
defined = set (database.keys())

referenced = set ()

B. Missing Prerequisite Identification

for concept_id in concept_ids:
def find_missing_prerequisites( concept = database.get (concept_id)
concept_ids: List[str], if concept:




referenced.update (concept.prerequisites)

missing = referenced - defined
return missing

C. Consistency Checks

Check 1: Every concept’s prerequisites have lower layers

def validate_layer_consistency (concepts, layers):
for concept_id, layer in layers.items():
concept = database[concept_id]
for prereqg_id in concept.prerequisites:
if prereqg_id in layers:

assert layers|[prereq_id]

f"{concept_id} _layer,
inconsistent"

< layer, \

Check 2: No isolated components

def check_connectivity (concepts) :

graph = build_graph (concepts)

components = find_components (graph)
if len(components) > 1:

warn (f"Found,_ {len (components) } _disconnected
components")

Check 3: All referenced concepts exist

def validate_references (concepts, database):
for concept_id in concepts:
concept = database[concept_id]
for prereg_id in concept.prerequisites:
assert prereqg_id in database, \
f"Unknown_prereq: _{prereqg_id}"

IX. IMPLEMENTATION AND RESULTS

A. System Implementation

Technologies:

o Language: TypeScript/JavaScript

o LLM Integration: Claude 3.5 Sonnet via Anthropic API
« Database: In-memory TypeScript object (500+ concepts)
« Visualization: React + custom graph rendering

« Validation: Node.js scripts with comprehensive checks

Key Files:

e« mathConcepts.ts (2,847 lines): Complete concept
database

e recursivePrerequisites.ts (197 lines): Resolu-
tion algorithms

e layoutOptimizer.ts (428 lines): Hierarchical posi-
tioning

e chOParser.ts (268 lines): Chapter data parsing

e enhance-chapter. js (250+ lines): Iterative extrac-
tion

B. Corpus Statistics

Coverage: 7 complete SAT mathematics chapters

TABLE V
COMPLETE SYSTEM STATISTICS

Metric Count
Total Concepts 532
Prerequisite Edges 1,247
Maximum Layer Depth 23
Average Prerequisites per Concept 2.34
Concepts with Zero Prerequisites 18
Foundation Concepts (Layer 0-2) 28
Most Prerequisites (single concept) 12

Longest Prerequisite Chain
Average Resolution Expansion

23 concepts
6.56x

TABLE VI
EXTRACTION VALIDATION RESULTS (N=100)

Category Count  Accuracy
Correctly Extracted 97 97.0%
False Positives 2 2.0%
False Negatives 1 1.0%

C. Extraction Accuracy

We manually validated 100 randomly selected concept ex-
tractions:

False Positive Example: Extracted “calculator usage” (not
a mathematical concept, rather a tool)

False Negative Example: Missed “arithmetic mean” (syn-
onym of “average” which was extracted)

D. Prerequisite Validation

We validated prerequisite assignments by asking ex-
pert mathematics educators to verify 50 random concept-
prerequisite pairs:

TABLE VII
PREREQUISITE VALIDATION (N=50 PAIRS)

Rating Count  Percentage
Strongly Agree 41 82.0%
Agree 7 14.0%
Disagree 2 4.0%
Agreement 48 96.0%

Disagreement Example: Evaluator argued “fractions”
should be prerequisite for “division”, not vice versa (philo-
sophical difference in teaching order)

E. Performance Metrics
LLM extraction dominates processing time. However, this
is a one-time cost per chapter, and results are cached.
X. APPLICATIONS AND USE CASES

A. Personalized Learning Paths

Given student’s known concepts K, generate optimal learn-
ing sequence for target concept t:



TABLE VIII
PROCESSING TIME (SINGLE CHAPTER)

return {’ready’: True}

C. Adaptive Assessment

Select questions based on student’s concept mastery:

Stage Time (s) Percentage
LLM Extraction (4 passes) 45.3 89.1%
Database Matching 2.1 4.1%
Recursive Resolution 0.8 1.6%
Layer Calculation 1.2 2.4%
Layout Generation 1.4 2.8%
Total 50.8 100%
def generate_learning_path (
target: str,
known: Set[str]
) —> List[str]:
all_prereqgs = get_all_prerequisites_recursive (
target
)
missing = [p for p in all_preregs
if p not in known]
layers = calculate_layers (missing)

missing.sort (key=lambda c: layers[c])

return missing + [target]

def select_next_qguestion (student_knowledge) :

frontier = []
for concept in database.values():
preregs_met = all(

p in student_knowledge
for p in concept.prerequisites
)
not_mastered = (
concept.id not in student_knowledge

)

if preregs_met and not_mastered:
frontier.append (concept.id)

questions = [
g for g in question_bank
if any(c in g.concepts for c in frontier)

]

return random.choice (questions)

Example:

Student knows: [counting, addition,

Target: quadratic-formula

Learning path generated:

1. multiplication (Layer 4)

2. division (Layer 5)

3. fractions (Layer 6)

... (35 more concepts)

39. gquadratic-equations (Layer 14)
40. quadratic-formula (Layer 15)

B. Prerequisite-Aware Tutoring

LLM tutors can query prerequisite graph before teaching:

D. Curriculum Gap Analysis

Identify missing concepts between curriculum standards and

textbook:

subtract

def check_readiness (student_id, concept_id):
student_knowledge = get_student_knowledge (
student_id
)

prereqgs = database[concept_id].prerequisites

missing = [p for p in preregs
if p not in student_knowledge]

if missing:
return {

"ready’: False,

"missing_concepts’ :

" suggested_path’:

generate_learning_path (

concept_id,
student_knowledge

missing,

else:

_ﬁgﬁjinalyzefcurriculumﬁqaps(
i extbook_concepts,
standard_concepts

textbook_set = set (textbook_concepts)
standard_set = set (standard_concepts)

missing_from_textbook = (
standard_set - textbook_set
)

for concept in missing_from_textbook:

preregs = get_all_prerequisites_recursive (

concept
)
covered = [p for p in preregs
if p in textbook_set]
uncovered = [p for p in preregs
if p not in textbook_set]

print (f"{concept}:")
print (£"_, Prerequisites _covered:
_______________ {len(covered) }/{len (prereqgs) }")
if uncovered:
print (£"_ _Missing, prerequisites:
{uncovered}")

XI. RELATED WORK
A. Knowledge Graph Construction

Wikipedia-based KGs: DBpedia [1], YAGO [2] extract
structured data from Wikipedia but focus on entity relation-

ships, not educational prerequisites.



ConceptNet [3]]: Crowdsourced common sense knowl-
edge graph. Contains “related-to” edges but no explicit
“prerequisite-for” relation.

OpenCyc [4]]: Formal ontology with subsumption hierar-
chies. Lacks educational sequencing information.

Our work differs by:

o Focusing on prerequisite relationships, not general relat-
edness

o Automatic extraction from unstructured educational text

o Hierarchical layer assignment for pedagogical sequencing

B. Concept Extraction

Keyword Extraction: TF-IDF, RAKE [5]] extract important
terms but don’t capture implicit prerequisites.

Named Entity Recognition: spaCy, Stanford NER iden-
tify entities but mathematical concepts aren’t standard NER
categories.

Topic Modeling: LDA [6], NMF identify topics but don’t
reveal prerequisite structure.

Our multi-pass LLM extraction specifically targets prereq-
uisite discovery through hard question analysis.

C. Prerequisite Learning

RefD [7]]: Extracts prerequisite relations from MOOC click-
stream data. Requires large user interaction datasets.

Learning Concept Graphs [8]]: Uses Wikipedia link struc-
ture to infer prerequisites. Limited to Wikipedia coverage.

PrereqMap [9]: Crowdsourced concept mapping. Requires
extensive manual effort.

We automate extraction and validation, requiring no user
data or manual annotation beyond initial database construction.

D. Adaptive Learning Systems

Khan Academy [10]: Adaptive practice based on perfor-
mance but lacks explicit prerequisite graph for diagnosis.

ALEKS [11]]: Knowledge space theory with prerequisite
relationships, but requires extensive expert knowledge engi-
neering.

Cognitive Tutor [12]: Model tracing based on production
rules. Domain-specific and requires cognitive task analysis.

Our system generalizes across domains and automatically
constructs prerequisite structure from text.

XII. DISCUSSION
A. Limitations

LLM Dependency: Extraction quality depends on LLM
capability. GPT-3.5 missed 15% of prerequisites that GPT-4
caught.

Domain Specificity: Current database covers mathematics.
Extension to other domains requires domain expertise for
initial concept seeding.

Prerequisite Granularity: System enforces strict prereq-
uisites. Real learning may tolerate prerequisite gaps in some
contexts.

Multiple Valid Orderings: Some concepts have multiple
valid teaching orders. System chooses one canonical ordering.

B. Design Decisions

Why Recursive Resolution? Alternative: Manual specifica-
tion of complete concept lists per chapter. Recursive approach
reduces manual work by 85% (specify 15 concepts, get 100
automatically).

Why Layer-Based Layout? Alternative: Force-directed
graph layout. Layer-based approach provides pedagogical
meaning (layer = difficulty/depth) and guarantees no cycles
visually.

Why Multi-Pass Extraction? Alternative: Single-pass ex-
traction. Easy questions vs hard questions analysis critical for
comprehensive coverage (added 28% more concepts).

XIII. FUTURE WORK
A. Cross-Domain Extension

Apply system to:

o Physics: Force — Newton’s Laws — Mechanics

o Chemistry: Atoms — Molecules — Reactions

e Programming: Variables — Functions — Recursion
B. Automated Video Generation

Generate personalized instructional videos:

def generate_video (target_concept,
)t
path = generate_learning_path (
target_concept,
student_knowledge

student_knowledge

)

for concept in path:

script = generate_teaching_script (concept)
visuals = generate_visualizations (concept)
audio = text_to_speech (script)

segment = combine (script, visuals, audio)

video.add_segment (segment)

return video

C. Prerequisite Strength Weighting

Not all prerequisites equally important:

prerequisites: [

{7id’: ’"addition’, ’strength’: 1.0},
‘ {’id’": ’fractions’, ’strength’: 0.7},
‘ {’id’: ’'decimals’, ’strength’: 0.3}

|

Enable graceful degradation in teaching.

D. Collaborative Concept Refinement

Crowd-source prerequisite validation:

o Teachers vote on prerequisite accuracy
o Students mark confusing transitions
o Automated analysis of common failure points



XIV. CONCLUSION

We have presented a complete system for hierarchical
knowledge decomposition through recursive prerequisite anal-
ysis. Our key contributions—iterative LLM extraction, fuzzy
database matching, recursive resolution with memoization,
and layer-based hierarchical positioning—enable automatic
construction of comprehensive educational knowledge graphs
from unstructured text.

Applied to SAT mathematics, we demonstrate that 7 high-
level chapters decompose into 532 atomic concepts orga-
nized across 23 hierarchical layers, with average 6.56x ex-
pansion from target concepts to complete prerequisites. This
reveals the hidden structure of educational content and enables
prerequisite-aware personalized learning.

The system achieves 97% extraction accuracy and 96%
prerequisite validation agreement while processing chapters in
under 60 seconds. By exposing the true prerequisite structure
of knowledge, we enable Al tutoring systems to teach sys-
tematically rather than reactively, ensuring students never face
concepts without proper foundation.
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