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Abstract—The landscape of software engineering has under-
gone rapid transformation with the emergence of Artificial
Intelligence (AI) coding assistants, which are being increasingly
integrated into development workflows to boost productivity and
automate routine tasks. Although modern AI coding assistants,
such as Claude Code, Cursor, Codex, and many others, can
automatically access entire repositories, they operate as black
boxes: developers cannot see or control what context drives AI
decisions. This automatic operation creates uncertainty about
whether critical dependencies, security configurations, or test files
are considered. We present Lumen, an open-source tool that takes
a fundamentally different approach: preserving developer control
through transparent context assembly. Using a double-copy
interaction paradigm that leverages natural clipboard behavior,
Lumen instantly shows developers the dependency graph and
AI-generated summaries of files connected to their copied code.
This allows developers to create AI-generated code where the
model uses the same context that the developer is focusing on.
This design philosophy, which incorporates human-in-the-loop
capabilities with full visibility, lays the foundation for future
agentic capabilities, ensuring that developers understand and
control what the AI sees and does. We demonstrate through
Cognitive Walkthrough Analysis how Lumen reduces context
assembly overhead while maintaining the transparency necessary
for production code. Our open-source implementation provides
a foundation for the community to build upon, developing AI
tools that enhance rather than replace human judgment.

Index Terms—Software engineering, AI-assisted development,
Developer tools, Context-aware systems, Human-computer inter-
action, Transparent AI

I. INTRODUCTION

The landscape of Artificial Intelligence(AI)-assisted soft-
ware development has undergone rapid evolution. Tools like
GitHub Copilot provide real-time suggestions within IDEs,
while conversational systems like ChatGPT and Claude offer
sophisticated reasoning about code. More recently, agentic
tools such as Claude Code, Cursor, and Aider have emerged,
offering the ability to automatically access and analyze entire
repositories. These advances promise to transform how devel-
opers work, yet introduce a fundamental challenge: the loss of
visibility and control over what context drives AI decisions.
Recent studies have shown that AI assistance can reduce
the productivity of senior developers [1], with experienced
developers taking 19% longer to complete tasks when using
AI tools compared to working without them.

Consider a developer modifying an authentication endpoint.
An AI assistant with automatic repository access might gener-
ate functionally correct code that bypasses critical rate-limiting
middleware or ignores session validation requirements. The
developer cannot verify whether the AI considered these
dependencies until the code fails during testing or in an edge
case in production. This opacity creates a trust deficit that
limits AI adoption for production-critical code, indicating why
the productivity of senior developers has decreased despite the
increasing capability of AI programming agents.

The problem is not unique to any particular tool. Whether
using ChatGPT (requiring manual copy-paste), Cursor (with
automatic file access), or Claude Code (with repository-wide
analysis), developers face the same challenge: they cannot see
or control what context informs AI suggestions. Researchers
have found that developers spend significant time verifying AI
suggestions and crafting prompts to provide adequate context,
time that could be spent on actual development [2].

This context assembly challenge is compounded by work-
flow disruption. Studies on flow state interruption in software
development [3] demonstrate that interruptions during soft-
ware development cause cognitive recovery periods. Current
AI tools, whether manual or automated, often disrupt devel-
opers’ natural workflow, either through tedious copy-paste
operations or by removing them from the decision-making
loop entirely.

In this paper, we present Lumen, a tool that aims to address
these challenges through a fundamentally different approach:
developer-controlled AI assistance with transparent context
assembly. When developers copy their code twice during
their normal workflow, if Lumen has access to the develop-
ment project files, Lumen instantly displays the dependency
graph and AI-generated summaries of connected files. More
importantly, it allows users to add the copied and linked
information automatically to the context for a future query.
Lumen uses the copy (Ctrl+C) feature to operate. A single
copy preserves regular clipboard operation, while a double
copy within a second signals intent for AI assistance, keeping
Lumen’s interface active for context control. In a Cognitive
Walkthrough Analysis [4], we found that Lumen’s double-
copy interaction design significantly reduces the viscosity of
context assembly from 15-20 manual operations (in traditional



approaches) to 2-5 guided selections, while maintaining high
visibility of dependencies through the visual graph display.
Lumen’s double-copy interaction design also eliminates pre-
mature commitment by allowing developers to preview and
adjust context before AI processing.

This design philosophy, which keeps humans in the driver’s
seat with full visibility, serves two critical purposes. First, it
ensures that developers understand what context the AI needs
and receives, thereby building trust through transparency.
Second, it creates a foundation for future agentic capabilities,
where AI can perform more sophisticated tasks while develop-
ers maintain oversight and control. This leads us to the central
research question guiding this work: How can we design AI-
powered developer tools that enhance transparency and
preserve agency without disrupting natural workflows?
The key insight is that effective AI assistance does not require
removing human judgment; instead, it requires augmenting
human capabilities with transparent, controllable tools.

Our contributions include:
• A novel double-copy interaction paradigm that preserves

normal workflow while enabling AI assistance on multi-
ple applications and operating systems

• Transparent context visualization showing file dependen-
cies and AI summaries before processing

• An open-source implementation demonstrating how de-
veloper control can coexist with powerful AI capabilities

In this work, we contribute both novel interaction tech-
niques and engineering artifacts. Specifically, the double-
copy interaction paradigm is a novel, lightweight approach
to triggering AI assistance that preserves developer flow, a
design that, to our knowledge, has not been explored in prior
developer-AI tooling. In parallel, we present a well-engineered
open-source implementation that integrates transparent context
visualization, dependency-aware summaries, and customizable
AI backends. This separation is key: while prior tools assemble
context or visualize dependencies, none provide the combined
affordance of interactive, developer-controlled, live context
assembly activated from within natural workflows. Lumen’s
approach addresses current limitations in AI-assisted develop-
ment while laying the groundwork for improved human-AI
collaboration.

II. RELATED WORK

Recent advances in AI-powered tools have significantly
reshaped how developers interact with software engineering
environments. However, critical challenges persist regarding
trust, control, and transparency in integrating these assistants
into real-world workflows. Below, we summarize the most
relevant literature in two key areas: AI-assisted software
development and trust/control in developer-AI interaction.

A. AI-Assisted Software Development

AI-assisted development tools have progressed from single-
file completion models, like GitHub Copilot [5], to more
advanced systems capable of analyzing entire repositories.
Tools such as ChatGPT offer robust reasoning capabilities but

disrupt developer workflows by requiring external interaction.
Newer systems like Cursor and Claude CLI aim to embed
AI directly into developer environments with project-level
awareness.

Despite these advancements, developers often face a lack of
real-time contextual alignment. Hartman et al. propose a two-
stage retrieval mechanism to achieve comprehensive codebase
understanding, yet their approach remains challenging to inte-
grate into everyday workflows [6]. Empirical studies, such as
Sergeyuk et al.’s survey of 481 programmers, confirm that the
absence of project-scale context is a key limitation of current
AI assistants [7].

B. Trust and Control in Developer-AI Interaction
A growing body of research highlights how current tools

erode developer trust and control. Barke et al. reveal a dual
interaction mode, where developers either maintain or lose
control depending on the AI’s behavior [8].

Large-scale studies, like Liang et al.’s survey at ICSE 2024
with 410 developers, validate these concerns, pinpointing a
lack of contextual understanding as a barrier to adoption [9].
While prior work has demonstrated the potential of repository-
wide AI assistance and highlighted the challenges surrounding
trust and control, to the best of our knowledge, none have
successfully integrated transparent, developer-controlled con-
text assembly directly into the natural development workflow.
This is the gap our work aims to fill.

III. THE LUMEN APPROACH

AI coding assistants are rapidly evolving, but their growing
capabilities often come at the cost of developer agency.
Existing tools operate either through opaque automation or
require intrusive workflow changes, leaving developers un-
certain about the context being used and how decisions are
made. Lumen takes a different path. It is grounded in the
belief that effective AI assistance should amplify, not replace,
human judgment. In this section, we present the core principles
and interaction mechanisms behind Lumen, designed to offer
transparency, context control, and seamless integration with
natural developer behavior.

A. Novelty and Design Contribution
Lumen introduces two core innovations that distinguish it

from prior work. First, the double-copy interaction paradigm
offers a novel trigger mechanism for AI assistance that aligns
with existing developer behavior (copy-paste), eliminating the
need for explicit commands or context switching. Unlike
prior tools that either rely on full automation or manual
prompting, this method balances control and flow continuity.
Second, Lumen integrates transparent real-time context assem-
bly with a dependency-aware visualization and AI-generated
summaries, allowing developers to audit and modify what the
AI sees before query submission. While previous tools have
implemented some of these capabilities in isolation, Lumen
is, to our knowledge, the first to unify them into a cohesive,
extensible framework grounded in transparency and human-
in-the-loop control.



B. Design Philosophy: Augment, Do not Automate

Lumen’s fundamental design principle is that AI should
augment developer capabilities rather than automate developer
decisions. This philosophy emerges from the recognition that
production code requires not just functional correctness but
also adherence to security policies, performance requirements,
architectural patterns, and team conventions, constraints that
are difficult to encode in AI systems but obvious to developers
familiar with the codebase.

Unlike automatic tools that operate as black boxes, Lumen
ensures every AI interaction is transparent and controllable.
Developers see exactly which files will provide context, un-
derstand why those files are relevant through AI-generated
summaries, and can adjust the selection based on their specific
task. This approach transforms AI from an autonomous agent
making decisions in isolation to a powerful assistant operating
under developer guidance.

The augmentation philosophy extends to workflow inte-
gration. Rather than requiring developers to learn new com-
mands or switch to dedicated interfaces, Lumen leverages the
universal copy-paste interaction. This design choice reflects
our belief that the best tools are those that enhance existing
workflows rather than replacing them.

C. The Double-Copy Interaction Paradigm

The double-copy paradigm embodies Lumen’s core features,
balancing normal workflow with AI assistance.

Single Copy: When a developer copies text, Lumen per-
forms rapid file detection and displays a brief popup showing
the identified source file. This pop-up (presented in Figure 1
disappears after one second (configurable in settings), allowing
normal clipboard operation to continue. The brief appearance
provides ambient awareness without disruption. Developers
are aware that Lumen has detected their context, but they are
not required to engage with it.

Double Copy: If the developer copies again within one
second, Lumen interprets this as intent for AI assistance.
The pop-up remains active for 60 seconds, transforming from
a simple notification into a comprehensive context control
interface. This extended view shows the dependency graph, file
summaries, and context selection options. This design serves

Fig. 1. Double-Copy Interaction Popup Interface with Context Preview.

multiple purposes:

1) Reduced Learning Curve: Every developer knows how
to copy; the double-copy is a natural extension

2) Preserves Normal Workflow: Single copies work ex-
actly as expected

3) Intentional Activation: AI assistance requires explicit
action, preventing accidental activation

4) Immediate Access: No need to switch applications or
invoke special commands

The timing parameters (a 1-second initial timeout and a
60-second extended timeout) were chosen based on informal
testing to strike a balance between responsiveness and stability.
Users can adjust these values to match their preferences.

D. Transparent Context Assembly

When activated through double-copy, Lumen presents a
comprehensive view of available context, as presented in
Figure 2. Below we describe the details of this screen.

File Detection and Display: The primary panel shows the
detected source file with syntax highlighting. If detection fails
(which happens with heavily modified code), developers can
manually select the correct file from the project tree. This
fallback ensures the tool remains useful even when automatic
detection fails.

Dependency Visualization: An interactive graph displays
file relationships. Nodes represent files, colored by program-
ming language. Edges show import/export relationships. Node
size indicates importance (number of connections). Clicking
a node highlights its direct dependencies, making it easy to
understand the project structure at a glance.

Fig. 2. Interactive Dependency Visualization Graph Showing File Relation-
ships and Project Architecture.

AI-Generated Summaries: Each file in the project has an
AI-generated summary explaining its purpose and key func-
tionality. These summaries appear when you hover over the
dependency graph and in the file selection list. For example:

• auth-middleware.js: Validates JWT tokens and checks
user permissions

• rate-limiter.js: Implements sliding window rate limiting
for API endpoints



• user.model.js: Defines User schema with password hash-
ing and validation

Context Selection Interface: A checkbox list shows all
project files with clear indicators:

• Automatically selected files (the source file and its direct
imports)

• Suggested additions (test files, configurations)
• Available files (all other project files)
Developers can include or exclude any file with a single

click. The interface shows the total context size and warns if
approaching AI model token limits.

Context Preview: Before sending to AI, developers see
exactly what will be transmitted:

1 Selected Context (5 files, ˜2000 tokens):
2 - /src/api/login.js (source file)
3 - /src/middleware/auth.js (imported by source)
4 - /src/middleware/rate-limit.js (imported by source)
5 - /src/config/security.json (suggested - security

config)
6 - /test/api/login.test.js (suggested - test file)
7

8 Your query: [text input field]

This transparency ensures developers know precisely what
information the AI will use to generate suggestions.

E. Enabling Developer Control: Human-in-the-Loop

Lumen’s design reinforces developer control with a set of
features described below.

Explicit Context Boundaries: Unlike automatic tools that
might analyze arbitrary files, Lumen only includes files explic-
itly selected by the developer. This prevents AI from making
assumptions based on unrelated code or outdated files.

Query Refinement: The text input field allows developers
to provide specific instructions along with the code context.
For example: “Fix this login function but maintain backward
compatibility with the v1 API”. This ensures that AI sugges-
tions align with requirements that may not be evident from
the code alone.

F. Integration with Development Workflow

Lumen integrates seamlessly with existing development
environments by integrating the following features:

Editor Agnostic: By operating at the clipboard level, Lu-
men works with any editor or IDE. Developers do not need
to switch tools or learn new plugins.

Project Awareness: Once linked to a project directory, Lu-
men maintains awareness of file structure, recent changes, and
dependencies. This persistent context reduces setup overhead.

AI Provider Flexibility: Developers can choose their pre-
ferred AI backend:

• Claude for complex reasoning and large context windows
• GPT-4 for general-purpose assistance
• Groq for rapid responses
• Local models for privacy-sensitive code
This flexible integration ensures Lumen enhances existing

workflows rather than requiring wholesale process changes.

IV. IMPLEMENTATION

To realize Lumen’s vision of transparent, developer-
controlled AI assistance, we designed and built a modular sys-
tem optimized for responsiveness, extensibility, and workflow
compatibility. This section details the major components of
our implementation. We begin with the system architecture,
describing how Lumen leverages Qt’s event-driven model to
achieve a responsive UI. We then explain the file detection
algorithm used to map copied code to source files, followed
by our comprehensive dependency analysis and AI-powered
summary generation. Next, we describe the context assembly
pipeline that intelligently prepares AI input. We conclude by
highlighting key performance optimizations and discussing the
trade-offs inherent in our design decisions.

A. System Architecture

A version of Lumen built using Python libraries can be
found at https://github.com/lumenEngines/Core.

Below we discuss an event-driven architecture that main-
tains responsiveness while handling complex operations.

Main Application Thread: The PyQt5 application runs in
a single main thread using Qt’s event loop. The main entry
point (main.py) initializes:

• TextWindow class for the primary UI
• Multiple API connections (Anthropic, Groq)
• Screenshot worker thread for visual input processing
• Project management and file tracking systems
Clipboard Monitoring: Rather than a separate thread,

Lumen uses Qt’s QTimer for efficient clipboard polling:
• Configurable polling interval (default from settings)
• Detects changes through content comparison
• Implements double-copy detection for intentional triggers
• Runs within the main event loop to avoid threading

complexity
Asynchronous Processing: Computationally intensive tasks

use ThreadPoolExecutor:
• File summarization with configurable worker threads
• Batch processing for multiple files
• Dependency analysis operations
• API calls with timeout handling
UI Components: The interface includes:
• Web-based content display using QWebEngineView
• Interactive dependency graph visualization with force-

directed layout
• Project manager dialog for file organization
• Settings dialog for configuration

B. File Detection Algorithm

Lumen implements a multi-strategy approach for sub-
millisecond file detection.

Strategy 1: Hash-Based Line Matching (95% confi-
dence). The system maintains MD5 hashes of all meaningful
lines for O(1) lookup time complexity.

Strategy 2: Word Sequence Matching. Creates sliding
windows of word sequences for robust partial matching.



Strategy 3: Identifier Indexing. This feature is used to
index and track identifiers (such as function names, variables,
and class names) across files in a codebase.

Strategy 4: Sliding Window Fuzzy Matching. The
SmartContextMatcher offers enhanced fuzzy matching
capabilities.

C. Dependency Analysis

Lumen’s dependency analyzer
(FileDependencyAnalyzer) supports 40+ programming
languages through pattern-based parsing. The dependency
analyzer is designed to understand how different files in
a project relate to each other, specifically, which files
import or depend on others. This is crucial for accurately
identifying context during AI-assisted development. Lumen
uses pattern-based parsing to detect import statements within
source code. These are language-specific regular expressions
(regex patterns) that match how dependencies are declared in
different programming languages.

For example: In Python, you might write import utils or
from auth import login. In JavaScript, it could be import login
from ’./auth’ or const db = require(’./db’). Lumen defines and
uses regular expressions tailored to each language to extract
these relationships.

1 # Language-specific import patterns
2 self.import_patterns = {
3 ’python’: [
4 r’ˆ\s*from\s+([ˆ\s]+)\s+import’,
5 r’ˆ\s*import\s+([ˆ\s,]+)’
6 ],
7 ’javascript’: [
8 r’import\s+.*\s+from\s+[\’"]([ˆ\’"\)]+)[\’"]

’,
9 r’require\s*\(\s*[\’"]([ˆ\’"\)]+)[\’"]’,

10 r’export\s+\*\s+from\s+[\’"]([ˆ\’"\)]+)[\’"]
’

11 ],
12 ’typescript’: [
13 # Same as JavaScript plus type imports
14 r’import\s+type\s+.*\s+from\s+[\’"]([ˆ\’"\)

]+)[\’"]’
15 ],
16 # ... patterns for 40+ languages
17 }

To model the structure of software projects and their inter-
file relationships, Lumen’s dependency analyzer constructs a
directed graph using the NetworkX library. In this graph, each
node represents a source file, and each directed edge indicates
a dependency, such as an import or module usage, from one
file to another. This representation is critical for accurately
capturing the flow of dependencies within a codebase and
serves as the foundation for several core features of Lumen,
including interactive visualizations, context suggestion, and
impact analysis. By leveraging this graph structure, Lumen
enables developers to trace how changes in one file may affect
others, identify missing or hidden dependencies, and reason
about the system’s architecture as a whole. This design not
only supports transparent and informed AI interactions but
also reduces cognitive load by externalizing the codebase’s

structure, allowing developers to navigate and understand
complex systems more efficiently.

1 def analyze_project(self, project_root, file_list=
None):

2 self.graph = nx.DiGraph()
3

4 for file_path in file_list:
5 file_info = self.analyze_file(file_path,

project_root)
6 if file_info:
7 self.graph.add_node(file_path, **

file_info)
8

9 # Add edges for dependencies
10 for dep in file_info.get(’imports’, []):
11 resolved_path = self.

_resolve_import_path(
12 file_path, dep[’module’],

project_root
13 )
14 if resolved_path:
15 self.graph.add_edge(file_path,

resolved_path)

Additionally, Lumen includes an interactive visualization
widget with:

• Force-directed graph layout
• Flowing particle animations showing dependency direc-

tion
• Language-based color coding
• Click interactions for exploring dependencies

D. AI Summary Generation

File summaries are generated through a
FileSummarizer pipeline.

1 def summarize_file(self, file_path, file_content,
file_list):

2 # Read up to 100KB of file content
3 content_to_summarize = file_content[:102400]
4

5 prompt = self._create_summary_prompt(
6 file_path, content_to_summarize, file_list
7 )
8

9 # Try Anthropic API first, fall back to Groq
10 try:
11 summary = self.api_manager.

call_anthropic_api(prompt)
12 except:
13 summary = self.api_manager.call_groq_api(

prompt)
14

15 # Cache the summary
16 self._save_summary_to_cache(file_path, summary)
17 return summary

Key features:
• Processes files up to 100KB
• Structured prompts requesting specific information
• Dual API support with fallback
• Persistent JSON-based caching
• Batch processing with rate limiting

E. Context Assembly Pipeline

The context assembly in main.py follows a multi-source
approach:



1 def callCompletionAPI(searchText):
2 context_parts = []
3

4 # 1. Accumulated context buffer
5 if hasattr(textWindow, ’context_buffer’) and

textWindow.context_buffer:
6 context_parts.append("Accumulated context:\n

" + textWindow.context_buffer)
7

8 # 2. Selected file context with full content
9 if selected_file_path:

10 with open(selected_file_path, ’r’) as f:
11 file_content = f.read()
12 file_context = f"File: {file_name}\n‘‘‘\n{

file_content}\n‘‘‘"
13 context_parts.append(file_context)
14

15 # 3. Smart context matching
16 include_context, context_type, context_content =

\
17 smart_context_manager.should_include_context

(searchText, user_requested)
18 if include_context:
19 context_parts.append(context_content)
20

21 # 4. Combine with user query
22 full_text = "\n\n".join(context_parts) + "\n\

nCurrent request:\n" + searchText

F. Performance Optimizations
To handle large projects efficiently, Lumen implements

several optimizations, as presented below.
Hash-Based Indexing: Pre-computed lookup tables enable

sub-millisecond file detection:
1 # Truncated hashes for memory efficiency
2 line_hash = hashlib.md5(line.encode()).hexdigest()

[:12] # 12 chars
3 seq_hash = hashlib.md5(sequence.encode()).hexdigest

()[:10] # 10 chars

Smart File Filtering: Excludes problematic directories and
large files:

1 EXCLUDED_DIRS = {
2 ’node_modules’, ’.git’, ’__pycache__’, ’.

pytest_cache’,
3 ’venv’, ’env’, ’build’, ’dist’
4 }
5

6 # Skip large files for instant detection
7 if os.path.getsize(file_path) > 500 * 1024: # 500KB

limit
8 continue

Caching Strategies:
• API response caching with content-based keys
• Project summary caching in JSON files
• Lazy loading of project files
• In-memory normalized file content cache
Parallel Processing: For ultimate performance using multi-

core architectures.
1 with ThreadPoolExecutor(max_workers=self.max_workers

) as executor:
2 # Process in controlled batches
3 batch_size = min(self.max_workers, 5)
4 for i in range(0, len(files), batch_size):
5 batch = files[i:i + batch_size]
6 futures = [executor.submit(self.

summarize_file, f) for f in batch]

G. Limitations and Trade-offs

The current implementation has several limitations:
No True Multi-threading for UI: Uses Qt’s event loop

rather than separate threads, trading some parallelism for
simplicity and stability.

Static Analysis Only: The dependency analyzer cannot
detect:

• Runtime imports (__import__, importlib)
• Conditional imports
• String-based dynamic imports
Memory Considerations:
• 500KB limit for instant file detection
• 1MB limit for context matching
• In-memory caching may consume significant RAM for

large projects
API Rate Limiting:
• 0.5-second minimum between API calls
• Batch size limits to prevent overwhelming APIs
• No streaming support for real-time responses
These trade-offs prioritize reliability, maintainability, and

broad compatibility. The modular architecture allows teams to
extend functionality for specific use cases while maintaining
the core vision of transparent, developer-controlled AI assis-
tance.

V. EVALUATION

To evaluate Lumen’s impact on developer experience, we
conducted a cognitive walkthrough analysis grounded in the
Cognitive Dimensions of Notations framework [10], [11] and
design inspection methods by Wharton et al. [12]. This an-
alytical approach enabled us to systematically evaluate how
Lumen’s design choices impact key aspects of developer
cognition and workflow.

Our evaluation proceeded in three stages. First, we ana-
lyzed four relevant cognitive dimensions: viscosity, visibility,
premature commitment, and hidden dependencies, comparing
Lumen against traditional copy-paste workflows and auto-
matic repository-aware AI assistants. Next, we applied these
comparisons to three representative development scenarios:
debugging a login failure, adding rate limiting, and refactoring
authentication logic. Finally, we synthesized the findings to
understand Lumen’s overall impact on developer productivity
and workflow, while acknowledging the limitations of our
evaluation methodology.

A. Evaluation Method

Our evaluation focused on four cognitive dimensions par-
ticularly relevant to developer tools:

• Viscosity: Resistance to change in the environment
• Visibility: Ability to view components readily
• Premature Commitment: Requirements to make deci-

sions before necessary information is available
• Hidden Dependencies: Important links between entities

that are not visible
We analyzed two representative scenarios:



1) Bug Fix: Debugging a login failure requiring cross-file
investigation

2) Feature Addition: Adding rate limiting to multiple API
endpoints

Each scenario was evaluated using three approaches:
• Traditional: Manual copy-paste to external AI (ChatGP-

T/Claude)
• Automatic: Using repository-aware AI (Cursor/Claude

Code)
• Lumen: Our transparent context assembly approach
Table I presents the results of the evaluation.

TABLE I
COGNITIVE DIMENSION ANALYSIS

Viscosity (Resistance to Change)
Traditional High: Requires 15-20 manual operations

including file navigation and copy-paste
cycles

Automatic Low viscosity but inflexible: Single com-
mand execution without adjustment capa-
bility

Lumen Low viscosity with control: 2-5 guided
operations via double-copy interaction

Visibility
Traditional Poor: File relationships remain opaque; de-

pendencies easily overlooked
Automatic None: Black-box operation prevents verifi-

cation of analyzed files
Lumen High: Interactive dependency graph with

AI summaries and context preview
Premature Commitment

Traditional Low commitment but high effort: Iterative
refinement requires complete cycles

Automatic High: Developers must trust initial results
without preview capability

Lumen Deferred: Preview and adjustment before
submission eliminates exploration penalty

Hidden Dependencies
Traditional Hidden: Developers must maintain mental

models of file relationships
Automatic Operationally hidden: No indication of

which dependencies AI considers
Lumen Explicit: Visual graph reveals some impor-

tant relationships with highlighted sugges-
tions

B. Scenario Walkthroughs

We selected to analyze these scenarios (bug fix and feature
addition) because they demonstrate different aspects of context
assembly challenges, from discovering hidden dependencies
during debugging, to maintaining consistency across multi-
ple endpoints, to preserving functionality during structural
changes. Each scenario requires understanding relationships
between multiple files, making them ideal for comparing how
different approaches handle context transparency and control.

Scenario: Debugging Login Failure
Traditional Approach: Developer receives bug report about

login failures. They:
1) Open login endpoint file

2) Copy relevant function
3) Paste into ChatGPT
4) Receive suggestion about validation
5) Realize they forgot auth middleware
6) Navigate to middleware file
7) Copy middleware code
8) Paste into ongoing chat
9) Receive new suggestion considering middleware

10) Still miss rate limiter configuration
Time: 15 minutes

Context switches: 8
Files missed: 2 (rate limiter, tests)

Lumen Approach:
1) Copy problematic login code
2) Double-copy to activate Lumen
3) See dependency graph showing auth middleware, rate

limiter
4) Notice rate limiter config highlighted in red (modified

recently)
5) Include all relevant files with 3 clicks
6) Ask “Why might logins fail intermittently?”
7) AI identifies rate limiter misconfiguration
Time: 3 minutes

Context switches: 1
Files missed: 0

VI. REAL-WORLD USAGE EXAMPLES

To illustrate Lumen’s practical benefits and how it addresses
real development challenges, we present a series of real-world
scenarios drawn from typical software engineering workflows.
These examples demonstrate how Lumen enhances visibility,
reduces cognitive effort, and prevents common issues caused
by opaque AI assistance. Each scenario contrasts development
with and without Lumen, showcasing the tool’s impact on
debugging, security compliance, and team alignment.

A. Understanding Unfamiliar Code

Scenario: A developer joins a team working on an e-
commerce platform. They are tasked with fixing a bug in the
checkout process, but have never seen the codebase before.

Without Lumen: The developer opens the
checkout controller and sees a function call to
calculateShipping(). They grep for this function,
finding it in /services/shipping.js. Opening that
file, they see it imports from ../models/order and
../utils/geo. They open these files, trying to build a
mental model. After 20 minutes of exploration, they still have
not found the shipping rate configuration that’s causing the
bug.

With Lumen: The developer copies the
calculateShipping() call and double-taps Ctrl+C.
Lumen instantly shows:

• The shipping service file with summary: “Calculates
shipping costs based on weight, distance, and shipping
method”



• A dependency graph revealing connections to:
– /config/shipping-rates.json (highlighted

in red - recently modified)
– /models/order.js - “Order model with address

validation”
– /utils/geo.js - “Geographic distance calcula-

tions”
– /tests/shipping.test.js - “Tests for ship-

ping calculations”
The developer immediately sees the configuration file was

changed yesterday. They include all files in the context and
ask the AI: “The shipping calculation is returning incorrect
values for international orders. What might be wrong?”

The AI, seeing both the code and configuration, identifies
that the new configuration uses metric units, while the code
expects imperial units. A bug is found in 3 minutes, instead
of an hour of exploration.

B. Ensuring Security Compliance
Scenario: A developer needs to add a new endpoint for

password reset functionality. The company has strict security
requirements that all endpoints must implement rate limiting,
authentication checks, and audit logging.

Without Lumen: The developer copies an existing endpoint
as a template and asks AI to help create the password reset
functionality. The AI generates clean, working code that
handles password reset perfectly. During code review, security
team flags three issues:

• No rate limiting applied
• Audit logging missing
• Password complexity validation inconsistent with com-

pany standards
The developer has to refactor, adding dependencies they did

not know existed.
With Lumen: The developer copies the template endpoint.

Lumen shows the dependency graph with several middleware
files highlighted:

• /middleware/rate-limit.js - Sliding window
rate limiter

• /middleware/audit.js - Logs all sensitive oper-
ations

• /config/security.json - Security policies and
password rules

• /validators/password.js - Password complexity
validation

The warnings indicate these are commonly used with end-
points but were not in the copied code. The developer includes
all security-related files and asks: “Create a password reset
endpoint that follows all our security requirements.” The AI,
seeing the security middleware and configuration, generates
code that:

• Applies rate limiting using the existing middleware
• Includes audit logging for password reset attempts
• Uses the company’s password validation rules
• Follows the established security patterns
Code review passes without security issues.

C. Learning Team Patterns

Scenario: A new developer needs to add a feature for bulk
order processing. The team has established patterns for batch
operations, but these are not documented.

With Lumen: The developer copies code from a single
order processing function. Lumen reveals a pattern through
the dependency graph:

• Multiple files with “batch” in their names connect to a
central /utils/batch-processor.js

• These files all import from /queues/job-queue.js
• They share error handling through
/utils/batch-errors.js

• Each has corresponding files in /monitoring/ for
batch job tracking

Without asking anyone, the developer observes the team’s
pattern: batch operations utilize a job queue, share error
handling, and necessitate monitoring setup. They include ex-
amples of other batch operations and ask the AI: “Following
the team’s batch processing pattern, how should I implement
bulk order processing?”

The AI recognizes the established patterns and generates
code that fits seamlessly with team conventions. These real-
world examples illustrate how Lumen’s transparency prevents
common development pitfalls:

• Missing dependencies lead to bugs
• Security requirements get overlooked
• Refactoring breaks edge cases
• Team patterns are not followed
• Production environments differ from development
By making context visible and adjustable, Lumen helps

developers catch these issues before they become problems.

VII. DISCUSSION

A. The Case for Developer Control

The evolution of AI coding assistants reveals a fundamental
tension between capability and control. As tools become more
powerful, evolving from single-line completion to repository-
wide analysis, developers paradoxically lose visibility into
their operation. This opacity creates anxiety, particularly for
production systems where a missed dependency or ignored
security constraint can have serious consequences [13], [14].

Lumen’s approach demonstrates that this trade-off is unnec-
essary. By making context assembly transparent and keeping
developers in control, we can leverage AI’s capabilities while
maintaining the human judgment essential for quality software.
The key insight is that developers do not need AI to make
decisions for them; they need AI to help them make better
decisions with complete information.

This philosophy becomes even more crucial as AI capa-
bilities continue to expand. Future systems will likely be
able to implement complex features, refactor entire codebases,
and autonomously fix bugs. Without transparency and control,
these powerful capabilities become liabilities; developers may
not trust suggestions they cannot verify or understand [8].



B. Transparency as a Foundation for Trust

Trust in AI systems is not built solely through impressive
capabilities; it requires an understanding of how those capa-
bilities are applied. When developers can see exactly what
context informs AI suggestions, they can:

1) Verify Completeness: Ensure all relevant files are con-
sidered

2) Understand Reasoning: See why AI made specific
suggestions

3) Learn Patterns: Discover codebase relationships they
did not know

4) Prevent Errors: Catch missing dependencies before
they cause problems

This transparency transforms AI from a mysterious oracle
to an understandable assistant. Recent surveys [7], [9] indicate
that developers report feeling more confident using AI when
they can see its inputs, even if the AI’s internal reasoning
remains opaque.

C. Workflow Integration and Adoption

One of the most significant barriers to adopting AI tools is
workflow disruption. Developers have established patterns for
navigating code, debugging issues, and implementing features.
Tools that require abandoning these patterns face resistance,
regardless of their capabilities [15].

Lumen’s clipboard-based approach succeeds because it
enhances existing behavior rather than replacing it. Every
developer copies code for searching, sharing, or reference.
By building on this universal action, Lumen requires minimal
behavior change while providing maximum value.

The double-copy paradigm specifically addresses the bal-
ance between availability and intrusion. Single copies remain
unaffected, allowing for a normal workflow. The intentional
second copy signals desire for assistance without requiring
new keyboard shortcuts or commands to remember.

D. Open Source and Community Development

Lumen’s open-source foundation is central to its design
philosophy, enabling diverse teams to adapt the tool to their
specific needs and workflows. For example, security-focused
teams may extend Lumen with validators to prevent sensitive
files from being sent to external AI providers, while large
organizations might integrate the tool with internal documen-
tation systems or proprietary knowledge bases. In special-
ized domains, teams can add support for custom program-
ming languages or framework-specific heuristics, and privacy-
conscious developers may choose to reconfigure Lumen to run
entirely with local AI models. Rather than offering a rigid,
one-size-fits-all solution, Lumen provides a flexible foundation
that embraces extensibility as a core principle. Its architecture
supports modular customization through pluggable file ana-
lyzers, configurable AI backends, hookable context assembly
pipelines, and a modifiable UI that can be tailored to fit team-
specific development workflows. This design empowers the
community to evolve Lumen in alignment with their unique

requirements, reinforcing its value as a collaborative, adaptable
platform.

E. Limitations

While Lumen demonstrates the value of transparent context
assembly, several limitations point to future research direc-
tions, which we discuss below.

Dynamic Behavior Understanding: Current static analysis
cannot capture runtime dependencies, configuration loading,
or conditional imports. Future versions might integrate with
runtime analysis tools to provide complete dependency infor-
mation.

Semantic Understanding: The system currently treats all
files equally, but some files are more relevant than others
for specific tasks. Machine learning approaches could help
prioritize files based on task context.

Cross-Repository Dependencies: Modern development of-
ten spans multiple repositories. Extending Lumen to handle
microservices or library dependencies would increase its utility
for enterprise development [16].

Collaborative Context: Teams have shared knowledge
about code that is not captured in files. Integrating with
documentation, commit messages, or team communications
could provide richer context.

Performance at Scale: While adequate for most projects,
very large codebases (millions of files) challenge current
indexing approaches. Distributed indexing or incremental anal-
ysis could address these limitations.

Empirical Validation Through User Studies: While this
paper presents a design-oriented evaluation using cognitive
walkthroughs, a key limitation is the absence of an empirical
user study. To fully assess Lumen’s impact on usability,
productivity, and trust in AI assistance, we plan to conduct
structured studies with professional developers and software
engineering students. These studies will combine observational
protocols, think-aloud methods, and post-task interviews to
triangulate the effectiveness of Lumen’s interaction model in
real-world workflows. Future work will also explore longitudi-
nal deployments to assess adoption, learning curves, and tool
stickiness over time.

F. Implications for AI-Assisted Development

Lumen’s approach has broader implications for how we
think about AI in software development:

Human-AI Collaboration: Rather than pursuing fully au-
tonomous AI systems, we should focus on tools that amplify
human capabilities. The most effective AI assistants will be
those that work with developers, not instead of them [17].

Explainable AI Operations: As AI becomes more preva-
lent in development tools, explaining not just what AI suggests
but what information informed those suggestions becomes
critical for adoption and trust [6].

Contextual Awareness: The value of AI suggestions is di-
rectly proportional to the quality and completeness of context.
The tools must help developers provide rich context without
excessive manual effort.



Gradual Automation: Instead of immediately jumping to
full automation, tools should provide a spectrum of assistance
levels. Developers can start with transparent assistance and
gradually allow more automation as trust builds.

VIII. CONCLUSION

AI coding assistants are transforming software development,
but their effectiveness is constrained by a lack of transparency
and developer control over the context in which these sys-
tems operate. Lumen was motivated by this growing tension
between automation and trust. By introducing a double-copy
interaction paradigm and transparent context assembly, Lumen
empowers developers to direct AI assistance without disrupt-
ing their workflow. Through a cognitive walk-through analysis,
we demonstrated that Lumen significantly reduces cognitive
load and preserves flow state while making dependencies
visible and adjustable. This design leads to fewer context-
switching operations across several development tasks. Our
findings support the argument that trustworthy, agentic AI
tools must prioritize visibility and developer agency, setting
the foundation for a more integrated future between developers
and code-generating systems. Future work should address an
empirical evaluation of the tool with software practitioners,
as well as longitudinal studies to assess tool adoption and
scalability.
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